Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 181

Question Number 197851    Answers: 0   Comments: 0

If z_1 = (√((α−β)/2)) and z_2 = (√((α+β)/2)) . Show that ∣z_1 −z_2 ∣^2 + ∣z_1 +z_2 ∣ = 2∣z∣^2 +∣z_2 ∣^2 and deduce that ∣α+(√(α^2 −β^2 ))∣ + ∣α−(√(α^2 −β^2 ))∣ = ∣α+β∣ + ∣α−β∣ Thank you in advance

Ifz1=αβ2andz2=α+β2.Showthatz1z22+z1+z2=2z2+z22anddeducethatα+α2β2+αα2β2=α+β+αβThankyouinadvance

Question Number 197850    Answers: 1   Comments: 0

Solve the equation: (2sin x − 1)(2cos 2x + 2sin x +1) = 3(1−2cos 2x)

Solvetheequation:(2sinx1)(2cos2x+2sinx+1)=3(12cos2x)

Question Number 197848    Answers: 4   Comments: 0

Question Number 197847    Answers: 2   Comments: 0

If (x−1)^2 +(y−(√3))^2 <1, then find the range of ((x+y)/( (√(x^2 +y^2 )))).

If(x1)2+(y3)2<1,thenfindtherangeofx+yx2+y2.

Question Number 197843    Answers: 0   Comments: 2

Exercice 2

Exercice2

Question Number 197838    Answers: 2   Comments: 0

Question Number 197832    Answers: 1   Comments: 0

lim_(x→∞) ((2+(√(cosx)))/(−1+(√(cosx))))=?

limx2+cosx1+cosx=?

Question Number 197834    Answers: 2   Comments: 0

Question Number 197822    Answers: 1   Comments: 2

find maximum of ∣z^2 +2z−3∣ ?

findmaximumofz2+2z3?

Question Number 197821    Answers: 1   Comments: 0

find the value of : Ω = ∫_0 ^( 1) (( ln ( 1+ (1/x^( 2) ) ))/(2 + x^( 2) )) dx = ?

findthevalueof:Ω=01ln(1+1x2)2+x2dx=?

Question Number 197819    Answers: 1   Comments: 0

find the value of : 𝛗 = Σ_(n=1) ^∞ (( (−1)^(n−1) H_( 2n) )/n) = ? where,H_n =1+(1/2) +(1/3) +...+(1/n)

findthevalueof:ϕ=n=1(1)n1H2nn=?where,Hn=1+12+13+...+1n

Question Number 197808    Answers: 1   Comments: 1

prove lim_(n→∞) x^n = 0 when ∣x∣ < 1

provelimnxn=0whenx<1

Question Number 197802    Answers: 1   Comments: 0

I=∫_(−2) ^6 ((∣x−1∣)/(x−1)) dx =?

I=62x1x1dx=?

Question Number 197906    Answers: 1   Comments: 0

S= Σ_(k=1) ^∞ (( Γ^( 2) ( k ))/(k Γ (2k ))) = ? −−−−

S=k=1Γ2(k)kΓ(2k)=?

Question Number 197795    Answers: 2   Comments: 0

Question Number 197794    Answers: 1   Comments: 0

if x = log tan((π/4)+(y/2)), prove that y = −ilog tan(((ix)/2) + (π/4)) here i = (√(−1))

ifx=logtan(π4+y2),provethaty=ilogtan(ix2+π4)herei=1

Question Number 197792    Answers: 2   Comments: 0

Solve the following differential equation 1) y′′ + y = e^x + x^3 , y(0)=2, y′(0)=0 2) y′′ + y^′ − 2y = x + sin2x, y(0)=1, y′(0)=0 3) y′′ − y′ = xe^x , y(0)=2, y′(0)= 1 Thank you

Solvethefollowingdifferentialequation1)y+y=ex+x3,y(0)=2,y(0)=02)y+y2y=x+sin2x,y(0)=1,y(0)=03)yy=xex,y(0)=2,y(0)=1Thankyou

Question Number 197784    Answers: 1   Comments: 0

((x−2+3((x−3))^(1/3) (1+((x−3))^(1/3) )))^(1/3) + ((x+5+6((x−3))^(1/3) (1+2((x−3))^(1/3) )))^(1/3) = 5

x2+3x33(1+x33)3+x+5+6x33(1+2x33)3=5

Question Number 197783    Answers: 2   Comments: 0

∫((x.arctg(x))/(x^2 +1))dx=?

x.arctg(x)x2+1dx=?

Question Number 197776    Answers: 1   Comments: 3

Question Number 197772    Answers: 2   Comments: 1

Can anyone do this? ∫^( +∞) _( 1) ((t−1)/((1+t)^3 lnt))dt

Cananyonedothis?1+t1(1+t)3lntdt

Question Number 197771    Answers: 1   Comments: 0

Question Number 197767    Answers: 0   Comments: 1

Question Number 197766    Answers: 1   Comments: 1

∫_0 ^(π/2) (lim_(n→∞) nsin^(2n+1) x cos x)dx = ?

0π/2(limnnsin2n+1xcosx)dx=?

Question Number 197763    Answers: 0   Comments: 0

Question Number 197753    Answers: 3   Comments: 0

Solve the equation: (√(5x^2 +14x+9))−(√(x^2 −x−20))=5(√(x+1))

Solvetheequation:5x2+14x+9x2x20=5x+1

  Pg 176      Pg 177      Pg 178      Pg 179      Pg 180      Pg 181      Pg 182      Pg 183      Pg 184      Pg 185   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com