Question and Answers Forum |
AllQuestion and Answers: Page 181 |
If z_1 = (√((α−β)/2)) and z_2 = (√((α+β)/2)) . Show that ∣z_1 −z_2 ∣^2 + ∣z_1 +z_2 ∣ = 2∣z∣^2 +∣z_2 ∣^2 and deduce that ∣α+(√(α^2 −β^2 ))∣ + ∣α−(√(α^2 −β^2 ))∣ = ∣α+β∣ + ∣α−β∣ Thank you in advance |
Solve the equation: (2sin x − 1)(2cos 2x + 2sin x +1) = 3(1−2cos 2x) |
![]() |
If (x−1)^2 +(y−(√3))^2 <1, then find the range of ((x+y)/( (√(x^2 +y^2 )))). |
Exercice 2 |
![]() |
lim_(x→∞) ((2+(√(cosx)))/(−1+(√(cosx))))=? |
![]() |
find maximum of ∣z^2 +2z−3∣ ? |
find the value of : Ω = ∫_0 ^( 1) (( ln ( 1+ (1/x^( 2) ) ))/(2 + x^( 2) )) dx = ? |
find the value of : 𝛗 = Σ_(n=1) ^∞ (( (−1)^(n−1) H_( 2n) )/n) = ? where,H_n =1+(1/2) +(1/3) +...+(1/n) |
prove lim_(n→∞) x^n = 0 when ∣x∣ < 1 |
I=∫_(−2) ^6 ((∣x−1∣)/(x−1)) dx =? |
S= Σ_(k=1) ^∞ (( Γ^( 2) ( k ))/(k Γ (2k ))) = ? −−−− |
![]() |
if x = log tan((π/4)+(y/2)), prove that y = −ilog tan(((ix)/2) + (π/4)) here i = (√(−1)) |
Solve the following differential equation 1) y′′ + y = e^x + x^3 , y(0)=2, y′(0)=0 2) y′′ + y^′ − 2y = x + sin2x, y(0)=1, y′(0)=0 3) y′′ − y′ = xe^x , y(0)=2, y′(0)= 1 Thank you |
((x−2+3((x−3))^(1/3) (1+((x−3))^(1/3) )))^(1/3) + ((x+5+6((x−3))^(1/3) (1+2((x−3))^(1/3) )))^(1/3) = 5 |
∫((x.arctg(x))/(x^2 +1))dx=? |
![]() |
Can anyone do this? ∫^( +∞) _( 1) ((t−1)/((1+t)^3 lnt))dt |
![]() |
![]() |
∫_0 ^(π/2) (lim_(n→∞) nsin^(2n+1) x cos x)dx = ? |
![]() |
Solve the equation: (√(5x^2 +14x+9))−(√(x^2 −x−20))=5(√(x+1)) |
Pg 176 Pg 177 Pg 178 Pg 179 Pg 180 Pg 181 Pg 182 Pg 183 Pg 184 Pg 185 |