Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1819

Question Number 21588    Answers: 0   Comments: 1

Show that if G is a finite group of even order, then G has an odd number of elements of order 2.

ShowthatifGisafinitegroupofevenorder,thenGhasanoddnumberofelementsoforder2.

Question Number 21587    Answers: 1   Comments: 1

If n objects are arranged in a row, then find the number of ways of selecting three of these objects so that no two of them are next to each other.

Ifnobjectsarearrangedinarow,thenfindthenumberofwaysofselectingthreeoftheseobjectssothatnotwoofthemarenexttoeachother.

Question Number 21591    Answers: 1   Comments: 1

5cos^5 tsin t

5cos5tsint

Question Number 21595    Answers: 1   Comments: 1

3sec^2 3xtan3x

3sec23xtan3x

Question Number 21582    Answers: 1   Comments: 0

∫_(π/2) ^(π/4) (3x+7)

π/2π/4(3x+7)

Question Number 21581    Answers: 0   Comments: 0

Question Number 21580    Answers: 1   Comments: 0

Question Number 21578    Answers: 0   Comments: 1

Find the whole part of A? A=(1/(√2))+(1/(√3))+(1/(√4))+......+(1/(√(9999)))+(1/(√(10000))).

FindthewholepartofA?A=12+13+14+......+19999+110000.

Question Number 21574    Answers: 1   Comments: 0

The cyclic octagon ABCDEFGH has sides a, a, a, a, b, b, b, b respectively. Find the radius of the circle that circumscribes ABCDEFGH in terms of a and b.

ThecyclicoctagonABCDEFGHhassidesa,a,a,a,b,b,b,brespectively.FindtheradiusofthecirclethatcircumscribesABCDEFGHintermsofaandb.

Question Number 21573    Answers: 0   Comments: 0

Prove that 1 < (1/(1001)) + (1/(1002)) + (1/(1003)) + ... + (1/(3001)) < 1(1/3).

Provethat1<11001+11002+11003+...+13001<113.

Question Number 21572    Answers: 0   Comments: 0

Determine the largest 3-digit prime factor of the integer^(2000) C_(1000) .

Determinethelargest3digitprimefactoroftheinteger2000C1000.

Question Number 21566    Answers: 0   Comments: 2

Question Number 21564    Answers: 0   Comments: 1

A block of mass M is placed on smooth ground. Its upper surface is smooth and vertical surface is rough with coefficient of friction μ. A block of mass m_1 is placed on its horizontal surface and tied with a massless inextensible string passing over smooth pulley. Its other end is connected to another block of mass m_2 , which touches the vertical surface of block M. Now a horizontal force F starts acting on it. Q1. Which of the following is incorrect about above system? (1) There exists a value of F at which friction force is equal to zero (2) When F = 0, the blocks cannot remain stationary (3) There exists two limiting values of F at which the blocks m_1 and m_2 will remain stationary w.r.t. block of mass M (4) The limiting friction between m_2 and M is independent of F Q2. In the above case, let m_1 − μm_2 be greater than 1. Choose the incorrect value of F for which the blocks m_1 and m_2 remain stationary with respect to M (1) (M + m_1 + m_2 )((m_2 g)/m_1 ) (2) ((m_2 (M + m_1 + m_2 ))/((m_1 − μm_2 )))g (3) (((M + m_1 + m_2 )m_2 g)/((m_1 + μm_2 ))) (4) (M + m_1 + m_2 )(g/μ) Q3. Let vertical part of block M be smooth. Choose the correct alternative (1) There exist two limiting values for system to remain relatively at rest (2) For one unique value of F, the blocks m_1 and m_2 remain stationary with respect to block M (3) The blocks m_1 and m_2 cannot be in equilibrium for any value of F (4) There exists a range of mass M, for which system remains stationary

AblockofmassMisplacedonsmoothground.Itsuppersurfaceissmoothandverticalsurfaceisroughwithcoefficientoffrictionμ.Ablockofmassm1isplacedonitshorizontalsurfaceandtiedwithamasslessinextensiblestringpassingoversmoothpulley.Itsotherendisconnectedtoanotherblockofmassm2,whichtouchestheverticalsurfaceofblockM.NowahorizontalforceFstartsactingonit.Q1.Whichofthefollowingisincorrectaboutabovesystem?(1)ThereexistsavalueofFatwhichfrictionforceisequaltozero(2)WhenF=0,theblockscannotremainstationary(3)ThereexiststwolimitingvaluesofFatwhichtheblocksm1andm2willremainstationaryw.r.t.blockofmassM(4)Thelimitingfrictionbetweenm2andMisindependentofFQ2.Intheabovecase,letm1μm2begreaterthan1.ChoosetheincorrectvalueofFforwhichtheblocksm1andm2remainstationarywithrespecttoM(1)(M+m1+m2)m2gm1(2)m2(M+m1+m2)(m1μm2)g(3)(M+m1+m2)m2g(m1+μm2)(4)(M+m1+m2)gμQ3.LetverticalpartofblockMbesmooth.Choosethecorrectalternative(1)Thereexisttwolimitingvaluesforsystemtoremainrelativelyatrest(2)ForoneuniquevalueofF,theblocksm1andm2remainstationarywithrespecttoblockM(3)Theblocksm1andm2cannotbeinequilibriumforanyvalueofF(4)ThereexistsarangeofmassM,forwhichsystemremainsstationary

Question Number 21571    Answers: 1   Comments: 0

ABCD is a cyclic quadrilateral; x, y, z are the distances of A from the lines BD, BC, CD respectively. Prove that ((BD)/x) = ((BC)/y) + ((CD)/z).

ABCDisacyclicquadrilateral;x,y,zarethedistancesofAfromthelinesBD,BC,CDrespectively.ProvethatBDx=BCy+CDz.

Question Number 22554    Answers: 1   Comments: 0

find the eqution of normal to the circle 2x^2 +2y^2 −3x+4y−32=0 at(2,3)

findtheequtionofnormaltothecircle2x2+2y23x+4y32=0at(2,3)

Question Number 21557    Answers: 0   Comments: 0

A man of mass 85 kg stands on a lift of mass 30 kg. When he pulls on the rope, he exerts a force of 400 N on the floor of the lift. Calculate acceleration of the lift. Given g = 10 m/s^2 .

Amanofmass85kgstandsonaliftofmass30kg.Whenhepullsontherope,heexertsaforceof400Nonthefloorofthelift.Calculateaccelerationofthelift.Giveng=10m/s2.

Question Number 21549    Answers: 2   Comments: 0

The value of the expression 3(sin θ−cos θ)^4 +6(sin θ+cos θ)^2 +4(sin^6 θ+cos^6 θ) is

Thevalueoftheexpression3(sinθcosθ)4+6(sinθ+cosθ)2+4(sin6θ+cos6θ)is

Question Number 21545    Answers: 0   Comments: 0

Question Number 21541    Answers: 0   Comments: 0

Question Number 21535    Answers: 0   Comments: 0

Which forces of attraction are responsible for liquefaction of H_2 ? (a) Coulombic forces (b) Dipole forces (c) Hydrogen bonding (d) Van der Waal′s forces.

WhichforcesofattractionareresponsibleforliquefactionofH2?(a)Coulombicforces(b)Dipoleforces(c)Hydrogenbonding(d)VanderWaalsforces.

Question Number 21531    Answers: 1   Comments: 2

Factorise the equation by factor theorem 12x^ 3 + 4x^ 2−3x−1

Factorisetheequationbyfactortheorem12x^3+4x^23x1

Question Number 21526    Answers: 1   Comments: 3

Question Number 21692    Answers: 1   Comments: 0

Let f(x) is a quadratic equation and x^2 − 2x + 3 ≤ f(x) ≤ 2x^2 − 4x + 4 for every x ∈ R If f(5) = 26, then f(7) is equal to ... (A) 38 (D) 74 (B) 50 (E) 92 (C) 56

Letf(x)isaquadraticequationandx22x+3f(x)2x24x+4foreveryxRIff(5)=26,thenf(7)isequalto...(A)38(D)74(B)50(E)92(C)56

Question Number 21519    Answers: 1   Comments: 0

If th roots of the equation x^2 +2ax+b=0 are real and disinct and they differ by at most 2m, then b lies in the interval

Ifthrootsoftheequationx2+2ax+b=0arerealanddisinctandtheydifferbyatmost2m,thenbliesintheinterval

Question Number 21516    Answers: 2   Comments: 0

A 5-kg body is suspended from a spring- balance, and an identical body is balanced on a pan of a physical balance. If both the balances are kept in an elevator, then what would happen in each case when the elevator is moving with an upward acceleration?

A5kgbodyissuspendedfromaspringbalance,andanidenticalbodyisbalancedonapanofaphysicalbalance.Ifboththebalancesarekeptinanelevator,thenwhatwouldhappenineachcasewhentheelevatorismovingwithanupwardacceleration?

Question Number 21510    Answers: 0   Comments: 0

  Pg 1814      Pg 1815      Pg 1816      Pg 1817      Pg 1818      Pg 1819      Pg 1820      Pg 1821      Pg 1822      Pg 1823   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com