Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1823

Question Number 21070    Answers: 1   Comments: 2

Let us consider an equation f(x) = x^3 − 3x + k = 0. Then the values of k for which the equation has 1. Exactly one root which is positive, then k belongs to 2. Exactly one root which is negative, then k belongs to 3. One negative and two positive root if k belongs to

Letusconsideranequationf(x)=x33x+k=0.Thenthevaluesofkforwhichtheequationhas1.Exactlyonerootwhichispositive,thenkbelongsto2.Exactlyonerootwhichisnegative,thenkbelongsto3.Onenegativeandtwopositiverootifkbelongsto

Question Number 21067    Answers: 2   Comments: 0

∀n∈N, prove 9∣[n^3 +(n+1)^3 +(n+2)^3 ]

nN,prove9[n3+(n+1)3+(n+2)3]

Question Number 21076    Answers: 1   Comments: 0

integrate with respect to x ∫x^(sinx)

integratewithrespecttoxxsinx

Question Number 21060    Answers: 0   Comments: 8

write sin 1° in surd form please show workings.

writesin1°insurdformpleaseshowworkings.

Question Number 21140    Answers: 1   Comments: 1

if tan β=((2sin αsin γ)/(sin (α+γ))) so proof cot γ+cot α=2cot β

iftanβ=2sinαsinγsin(α+γ)soproofcotγ+cotα=2cotβ

Question Number 21053    Answers: 0   Comments: 0

Question Number 21050    Answers: 1   Comments: 0

The most general solution of the equation sinx + cosx = min_(a∈R) {1, a^2 − 4a + 6} is

Themostgeneralsolutionoftheequationsinx+cosx=minaR{1,a24a+6}is

Question Number 21048    Answers: 0   Comments: 0

If the equation 2cos2x − (a + 7)cosx + 3a − 13 = 0 possesses atleast one real solution, then the maximum integral value of ′a′ can be

Iftheequation2cos2x(a+7)cosx+3a13=0possessesatleastonerealsolution,thenthemaximumintegralvalueofacanbe

Question Number 21038    Answers: 1   Comments: 1

Question Number 21031    Answers: 0   Comments: 0

if :∀ε>0, ∀(a,b)∈R^2 ,a<b+ε prove: a≤b

if:ϵ>0,(a,b)R2,a<b+ϵprove:ab

Question Number 21029    Answers: 0   Comments: 0

Question Number 21021    Answers: 1   Comments: 2

Question Number 21015    Answers: 0   Comments: 0

Question Number 21013    Answers: 1   Comments: 1

Question Number 21012    Answers: 1   Comments: 3

A spring with one end attached to a mass and the other to a rigid support is stretched and released. (a) Magnitude of acceleration, when just released is maximum. (b) Magnitude of acceleration, when at equilibrium position, is maximum. (c) Speed is maximum when mass is at equilibrium position. (d) Magnitude of displacement is always maximum whenever speed is minimum.

Aspringwithoneendattachedtoamassandtheothertoarigidsupportisstretchedandreleased.(a)Magnitudeofacceleration,whenjustreleasedismaximum.(b)Magnitudeofacceleration,whenatequilibriumposition,ismaximum.(c)Speedismaximumwhenmassisatequilibriumposition.(d)Magnitudeofdisplacementisalwaysmaximumwheneverspeedisminimum.

Question Number 21009    Answers: 1   Comments: 0

Question Number 21006    Answers: 0   Comments: 0

Let z_1 and z_2 be two distinct complex numbers and let z = (1 − t)z_1 + tz_2 for some real number t with 0 < t < 1. If arg(w) denotes the principal argument of a non-zero complex number w, then (1) ∣z − z_1 ∣ + ∣z − z_2 ∣ = ∣z_1 − z_2 ∣ (2) Arg (z − z_1 ) = Arg (z − z_2 ) (3) determinant (((z − z_1 ),(z^ − z_1 ^ )),((z_2 − z_1 ),(z_2 ^ − z_1 ^ ))) = 0 (4) Arg (z − z_1 ) = Arg (z_2 − z_1 )

Letz1andz2betwodistinctcomplexnumbersandletz=(1t)z1+tz2forsomerealnumbertwith0<t<1.Ifarg(w)denotestheprincipalargumentofanonzerocomplexnumberw,then(1)zz1+zz2=z1z2(2)Arg(zz1)=Arg(zz2)(3)|zz1z¯z¯1z2z1z¯2z¯1|=0(4)Arg(zz1)=Arg(z2z1)

Question Number 21005    Answers: 0   Comments: 0

If z_1 = a + ib and z_2 = c + id are complex numbers such that ∣z_1 ∣ = ∣z_2 ∣ = 1 and Re(z_1 z_2 ^ ) = 0, then the pair of complex numbers ω_1 = a + ic and ω_2 = b + id satisfy (1) ∣ω_1 ∣ = 1 (2) ∣ω_2 ∣ = 1 (3) Re(ω_1 ω_2 ^ ) = 0 (4) ∣ω_1 ∣ = 2∣ω_2 ∣

Ifz1=a+ibandz2=c+idarecomplexnumberssuchthatz1=z2=1andRe(z1z¯2)=0,thenthepairofcomplexnumbersω1=a+icandω2=b+idsatisfy(1)ω1=1(2)ω2=1(3)Re(ω1ω¯2)=0(4)ω1=2ω2

Question Number 21001    Answers: 0   Comments: 0

determinant (((a 1 1)),((1 b 1)),((1 1 c)))>0 then showthat abc>−8−99

|a111b111c|>0thenshowthatabc>899

Question Number 20989    Answers: 1   Comments: 1

In the figure shown below, the block of mass 2 kg is at rest. If the spring constant of both the springs A and B is 100 N/m and spring B is cut at t = 0, then magnitude of acceleration of block immediately is

Inthefigureshownbelow,theblockofmass2kgisatrest.IfthespringconstantofboththespringsAandBis100N/mandspringBiscutatt=0,thenmagnitudeofaccelerationofblockimmediatelyis

Question Number 20988    Answers: 0   Comments: 1

Question Number 20991    Answers: 0   Comments: 1

x^3 −12x

x312x

Question Number 20992    Answers: 3   Comments: 1

Question Number 20986    Answers: 1   Comments: 1

A 50 kg log rest on the smooth horizontal surface. A motor deliver a towing force T as shown below. The momentum of the particle at t = 5 s is

A50kglogrestonthesmoothhorizontalsurface.AmotordeliveratowingforceTasshownbelow.Themomentumoftheparticleatt=5sis

Question Number 20984    Answers: 1   Comments: 1

A ball of mass m is moving with a velocity u rebounds from a wall with same speed. The collision is assumed to be elastic and the force of interaction between the ball and the wall varies as shown in the figure given below. The value of F_m is

Aballofmassmismovingwithavelocityureboundsfromawallwithsamespeed.Thecollisionisassumedtobeelasticandtheforceofinteractionbetweentheballandthewallvariesasshowninthefiguregivenbelow.ThevalueofFmis

Question Number 20983    Answers: 1   Comments: 0

Find the number of ordered triples (a, b, c) of positive integers such that abc = 108.

Findthenumberoforderedtriples(a,b,c)ofpositiveintegerssuchthatabc=108.

  Pg 1818      Pg 1819      Pg 1820      Pg 1821      Pg 1822      Pg 1823      Pg 1824      Pg 1825      Pg 1826      Pg 1827   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com