Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1827

Question Number 21390    Answers: 0   Comments: 0

∫_0 ^1 ((x^7 − 1)/(ln x)) dx

10x71lnxdx

Question Number 21388    Answers: 0   Comments: 4

A block of mass m is connected with another block of mass 2m by a light spring. 2m is connected with a hanging mass 3m by an inextensible light string. At the time of release of block 3m, find tension in the string and acceleration of all the masses.

Ablockofmassmisconnectedwithanotherblockofmass2mbyalightspring.2misconnectedwithahangingmass3mbyaninextensiblelightstring.Atthetimeofreleaseofblock3m,findtensioninthestringandaccelerationofallthemasses.

Question Number 21377    Answers: 0   Comments: 0

Balls are dropped from the roof of a tower at a fixed interval of time. At the moment when 9th ball reaches the ground the nth ball is (3/4)th height of the tower. What is the value of n?

Ballsaredroppedfromtheroofofatoweratafixedintervaloftime.Atthemomentwhen9thballreachesthegroundthenthballis(3/4)thheightofthetower.Whatisthevalueofn?

Question Number 21366    Answers: 3   Comments: 0

Question Number 21357    Answers: 1   Comments: 0

Solve : log_(2x+3) x^2 < 1

Solve:log2x+3x2<1

Question Number 21356    Answers: 1   Comments: 0

Solve : (2^((3x−1)/(x−1)) )^(1/3) < 8^((x−3)/(3x−7))

Solve:23x1x13<8x33x7

Question Number 21355    Answers: 1   Comments: 0

Solve : ∣x^2 + 3x∣ + x^2 − 2 ≥ 0

Solve:x2+3x+x220

Question Number 21354    Answers: 0   Comments: 4

Solve : (√(2x + 5)) + (√(x − 1)) > 8

Solve:2x+5+x1>8

Question Number 21374    Answers: 0   Comments: 2

In how many ways can the letters of the word PATLIPUTRA be arranged, so that the relative order of vowels are consonants do not alter?

InhowmanywayscanthelettersofthewordPATLIPUTRAbearranged,sothattherelativeorderofvowelsareconsonantsdonotalter?

Question Number 21350    Answers: 0   Comments: 0

prove (√2) < log_8 19 < (3)^(1/3)

prove2<log819<33

Question Number 21342    Answers: 1   Comments: 0

Question Number 21341    Answers: 2   Comments: 0

the angle between the straight lines x^2 +4xy+3y^2 =0 is

theanglebetweenthestraightlinesx2+4xy+3y2=0is

Question Number 21321    Answers: 1   Comments: 0

The number of real solutions of the equation 4x^(99) + 5x^(98) + 4x^(97) + 5x^(96) + ..... + 4x + 5 = 0 is

Thenumberofrealsolutionsoftheequation4x99+5x98+4x97+5x96+.....+4x+5=0is

Question Number 21319    Answers: 0   Comments: 0

If x, y, z are three real numbers such that x + y + z = 4 and x^2 + y^2 + z^2 = 6, then (1) (2/3) ≤ x, y, z ≤ 2 (2) 0 ≤ x, y, z ≤ 2 (3) 1 ≤ x, y, z ≤ 3 (4) 2 ≤ x, y, z ≤ 3

Ifx,y,zarethreerealnumberssuchthatx+y+z=4andx2+y2+z2=6,then(1)23x,y,z2(2)0x,y,z2(3)1x,y,z3(4)2x,y,z3

Question Number 21316    Answers: 0   Comments: 0

Let p = (x_1 − x_2 )^2 + (x_1 − x_3 )^2 + .... + (x_1 − x_6 )^2 + (x_2 − x_3 )^2 + (x_2 − x_4 )^2 + .... + (x_2 − x_6 )^2 + .... + (x_5 − x_6 )^2 = Σ_(1≤i<j≤6) ^6 (x_i − x_j )^2 . Then the maximum value of p if each x_i (i = 1, 2, ....., 6) has the value 0 and 1 is

Letp=(x1x2)2+(x1x3)2+....+(x1x6)2+(x2x3)2+(x2x4)2+....+(x2x6)2+....+(x5x6)2=61i<j6(xixj)2.Thenthemaximumvalueofpifeachxi(i=1,2,.....,6)hasthevalue0and1is

Question Number 21315    Answers: 0   Comments: 0

The number of real solutions of the equation ((97 − x))^(1/4) + (x)^(1/4) = 5

Thenumberofrealsolutionsoftheequation97x4+x4=5

Question Number 21314    Answers: 1   Comments: 0

Let α and β be the root of x^2 + px − (1/(2p^2 )) = 0, p ∈ R. The minimum value of α^4 + β^4 is

Letαandβbetherootofx2+px12p2=0,pR.Theminimumvalueofα4+β4is

Question Number 21313    Answers: 0   Comments: 4

Let k be a real number such that the inequality (√(x − 3)) + (√(6 − x)) ≥ k has a solution then the maximum value of k is

Letkbearealnumbersuchthattheinequalityx3+6xkhasasolutionthenthemaximumvalueofkis

Question Number 21311    Answers: 0   Comments: 0

Let a and b be positive real numbers with a^3 + b^3 = a − b, and k = a^2 + 4b^2 , then (1) k < 1 (2) k >1 (3) k = 1 (4) k > 2

Letaandbbepositiverealnumberswitha3+b3=ab,andk=a2+4b2,then(1)k<1(2)k>1(3)k=1(4)k>2

Question Number 21310    Answers: 1   Comments: 8

What do you guys think of creating a Telegram group to discuss theory and more descriptive questions?

WhatdoyouguysthinkofcreatingaTelegramgrouptodiscusstheoryandmoredescriptivequestions?

Question Number 21309    Answers: 0   Comments: 0

Suppose p is a polynomial with complex coefficients and an even degree. If all the roots of p are complex non-real numbers with modulus 1, prove that p(1) ∈ R iff p(−1) ∈ R.

Supposepisapolynomialwithcomplexcoefficientsandanevendegree.Ifalltherootsofparecomplexnonrealnumberswithmodulus1,provethatp(1)Riffp(1)R.

Question Number 21308    Answers: 0   Comments: 0

Find all complex numbers z such that ∣z − ∣z + 1∣∣ = ∣z + ∣z − 1∣∣

Findallcomplexnumberszsuchthatzz+1∣∣=z+z1∣∣

Question Number 21307    Answers: 0   Comments: 5

Let z_1 , z_2 , z_3 be complex numbers such that (i) ∣z_1 ∣ = ∣z_2 ∣ = ∣z_3 ∣ = 1 (ii) z_1 + z_2 + z_3 ≠ 0 (iii) z_1 ^2 + z_2 ^2 + z_3 ^2 = 0 Prove that for all n ≥ 2, ∣z_1 ^n + z_2 ^n + z_3 ^n ∣ ∈ {0, 1, 2, 3}.

Letz1,z2,z3becomplexnumberssuchthat(i)z1=z2=z3=1(ii)z1+z2+z30(iii)z12+z22+z32=0Provethatforalln2,z1n+z2n+z3n{0,1,2,3}.

Question Number 21295    Answers: 1   Comments: 0

For a particle performing uniform circular motion, angular momentum is constant in magnitude but direction keeps changing. Am I right or wrong?

Foraparticleperforminguniformcircularmotion,angularmomentumisconstantinmagnitudebutdirectionkeepschanging.AmIrightorwrong?

Question Number 21294    Answers: 1   Comments: 0

Let z_1 , z_2 , z_3 be complex numbers, not all real, such that ∣z_1 ∣ = ∣z_2 ∣ = ∣z_3 ∣ = 1 and 2(z_1 + z_2 + z_3 ) − 3z_1 z_2 z_3 ∈ R. Prove that max(arg z_1 , arg z_2 , arg z_3 ) ≥ (π/6) . Where 0 < arg(z_1 ), arg(z_2 ), arg(z_3 ) < 2π.

Letz1,z2,z3becomplexnumbers,notallreal,suchthatz1=z2=z3=1and2(z1+z2+z3)3z1z2z3R.Provethatmax(argz1,argz2,argz3)π6.Where0<arg(z1),arg(z2),arg(z3)<2π.

Question Number 21293    Answers: 1   Comments: 0

Let n be an even positive integer such that (n/2) is odd and let α_0 , α_1 , ...., α_(n−1) be the complex roots of unity of order n. Prove that Π_(k=0) ^(n−1) (a + bα_k ^2 ) = (a^(n/2) + b^(n/2) )^2 for any complex numbers a and b.

Letnbeanevenpositiveintegersuchthatn2isoddandletα0,α1,....,αn1bethecomplexrootsofunityofordern.Provethatn1k=0(a+bαk2)=(an2+bn2)2foranycomplexnumbersaandb.

  Pg 1822      Pg 1823      Pg 1824      Pg 1825      Pg 1826      Pg 1827      Pg 1828      Pg 1829      Pg 1830      Pg 1831   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com