Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1837

Question Number 19192    Answers: 0   Comments: 2

Find a natural number ′n′ such that 3^9 + 3^(12) + 3^(15) + 3^n is a perfect cube of an integer.

Findanaturalnumbernsuchthat39+312+315+3nisaperfectcubeofaninteger.

Question Number 19262    Answers: 1   Comments: 0

Let p, q, r be three mutually perpendicular vectors of the same magnitude. If a vector x satisfies the equation p ×{x−q)×p}+q×{x−r)×q} + r×{x−p)×r}=0, then x is given by

Letp,q,rbethreemutuallyperpendicularvectorsofthesamemagnitude.Ifavectorxsatisfiestheequationp×{xq)×p}+q×{xr)×q}+r×{xp)×r}=0,thenxisgivenby

Question Number 19182    Answers: 2   Comments: 0

Find all three digit numbers abc (with a ≠ 0) such that a^2 + b^2 + c^2 , is divisible by 26.

Findallthreedigitnumbersabc(witha0)suchthata2+b2+c2,isdivisibleby26.

Question Number 19171    Answers: 1   Comments: 1

log_(√2) (√(2(√(2(√(2(√(2 ))))))))

log22222

Question Number 19154    Answers: 0   Comments: 0

If f(x) = (9^x /(9^x + 3)), find the value f((1/(2007))) + f((2/(2007))) + f((3/(2007))) + ... + f(((2006)/(2006)))

Iff(x)=9x9x+3,findthevaluef(12007)+f(22007)+f(32007)+...+f(20062006)

Question Number 19150    Answers: 1   Comments: 4

A semicircle is tangent to both legs of a right triangle and has its centre on the hypotenuse. The hypotenuse is partitioned into 4 segments, with lengths 3, 12, 12, and x, as shown in the figure. Determine the value of ′x′.

Asemicircleistangenttobothlegsofarighttriangleandhasitscentreonthehypotenuse.Thehypotenuseispartitionedinto4segments,withlengths3,12,12,andx,asshowninthefigure.Determinethevalueofx.

Question Number 19148    Answers: 1   Comments: 0

If f(x)= determinant (((sin x+sin2x+sin 3x),(sin 2x),(sin 3x)),(( 3+4 sin x),( 3),(4 sin x)),(( 1+sin x),( sin x),( 1))) then the value of ∫_( 0) ^(π/2) f(x) dx is

Iff(x)=|sinx+sin2x+sin3xsin2xsin3x3+4sinx34sinx1+sinxsinx1|thenthevalueofπ/20f(x)dxis

Question Number 19140    Answers: 0   Comments: 9

A racing car travels on a track (without banking) ABCDEFA. ABC is a circular arc of radius 2R. CD and FA are straight paths of length R and DEF is a circular arc of radius R = 100 m. The co-efficient of friction on the road is μ = 0.1. The maximum speed of the car is 50 ms^(−1) . Find the minimum time for completing one round.

Aracingcartravelsonatrack(withoutbanking)ABCDEFA.ABCisacirculararcofradius2R.CDandFAarestraightpathsoflengthRandDEFisacirculararcofradiusR=100m.Thecoefficientoffrictionontheroadisμ=0.1.Themaximumspeedofthecaris50ms1.Findtheminimumtimeforcompletingoneround.

Question Number 19137    Answers: 1   Comments: 1

Figure shows (x, t), (y, t) diagram of a particle moving in 2-dimensions. If the particle has a mass of 500 g, find the force (direction and magnitude) acting on the particle.

Figureshows(x,t),(y,t)diagramofaparticlemovingin2dimensions.Iftheparticlehasamassof500g,findtheforce(directionandmagnitude)actingontheparticle.

Question Number 19135    Answers: 1   Comments: 0

solve for x: 2^(∣x+2∣) −∣2^(x+1) −1∣=2^(x+1) +1

solveforx:2x+22x+11∣=2x+1+1

Question Number 19134    Answers: 1   Comments: 0

If (1/((243)^x )) = (729)^y = 3^3 , then find the value of 5x + 6y.

If1(243)x=(729)y=33,thenfindthevalueof5x+6y.

Question Number 19127    Answers: 0   Comments: 0

Question Number 19123    Answers: 1   Comments: 0

{ ((xf(x)−g(x)+h(x)=2x+1)),((f(x)−(2x−2)g(x)−3h(x)=x)),((ln (x)f(x)−(x−3)h(x)=1)) :} Find f(x),g(x),h(x)

{xf(x)g(x)+h(x)=2x+1f(x)(2x2)g(x)3h(x)=xln(x)f(x)(x3)h(x)=1Findf(x),g(x),h(x)

Question Number 19122    Answers: 1   Comments: 0

Prove that r_1 + r_2 + r_3 = 4R + r

Provethatr1+r2+r3=4R+r

Question Number 19121    Answers: 0   Comments: 0

Question Number 19118    Answers: 0   Comments: 0

Question Number 19104    Answers: 1   Comments: 1

Let ABC be an acute-angled triangle with AC ≠ BC and let O be the circumcenter and F be the foot of altitude through C. Further, let X and Y be the feet of perpendiculars dropped from A and B respectively to (the extension of) CO. The line FO intersects the circumcircle of ΔFXY, second time at P. Prove that OP < OF.

LetABCbeanacuteangledtrianglewithACBCandletObethecircumcenterandFbethefootofaltitudethroughC.Further,letXandYbethefeetofperpendicularsdroppedfromAandBrespectivelyto(theextensionof)CO.ThelineFOintersectsthecircumcircleofΔFXY,secondtimeatP.ProvethatOP<OF.

Question Number 19101    Answers: 0   Comments: 3

A polynomial f(x) with rational coefficients leaves remainder 15, when divided by x − 3 and remainder 2x + 1, when divided by (x − 1)^2 . Find the remainder when f(x) is divided by (x − 3)(x − 1)^2 .

Apolynomialf(x)withrationalcoefficientsleavesremainder15,whendividedbyx3andremainder2x+1,whendividedby(x1)2.Findtheremainderwhenf(x)isdividedby(x3)(x1)2.

Question Number 19097    Answers: 1   Comments: 0

If tan ((π/4) + x) = tan^3 ((π/4) + α) then prove that cosec 2x = ((1 + 3 sin^2 2α)/(3 sin 2α + sin^3 2α))

Iftan(π4+x)=tan3(π4+α)thenprovethatcosec2x=1+3sin22α3sin2α+sin32α

Question Number 19095    Answers: 0   Comments: 3

Question Number 19085    Answers: 0   Comments: 0

f_n (x)=(√(f_(n−1) (x)×(f_(n−1) (x))′)) f_1 (x)=x^(2017) +x^8 +x^4 lim_(n→∞) f_n (x)=?

fn(x)=fn1(x)×(fn1(x))f1(x)=x2017+x8+x4Double subscripts: use braces to clarify

Question Number 19083    Answers: 1   Comments: 4

Question Number 19080    Answers: 0   Comments: 1

Question Number 19064    Answers: 1   Comments: 2

Question Number 19063    Answers: 2   Comments: 0

find the possible values of x if ((8^x +27^x )/(12^x +18^x ))=(7/6)

findthepossiblevaluesofxif8x+27x12x+18x=76

Question Number 19058    Answers: 0   Comments: 0

  Pg 1832      Pg 1833      Pg 1834      Pg 1835      Pg 1836      Pg 1837      Pg 1838      Pg 1839      Pg 1840      Pg 1841   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com