Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1851

Question Number 18747    Answers: 2   Comments: 0

Question Number 18746    Answers: 2   Comments: 0

Question Number 18744    Answers: 0   Comments: 1

Question Number 18742    Answers: 1   Comments: 0

The value of cot16°cot44° + cot44°cot76° − cot76°cot16° is

Thevalueofcot16°cot44°+cot44°cot76°cot76°cot16°is

Question Number 18731    Answers: 3   Comments: 0

tan ((2π)/5) − tan (π/(15)) − (√3) tan ((2π)/5) tan (π/(15)) =

tan2π5tanπ153tan2π5tanπ15=

Question Number 18730    Answers: 0   Comments: 3

If [((((2/3))^5 ))^(1/9) ]^(√(x−5)) =a^0 , find the value of x.

If[(23)59]x5=a0,findthevalueofx.

Question Number 18723    Answers: 1   Comments: 0

Question Number 18722    Answers: 0   Comments: 0

Question Number 18715    Answers: 1   Comments: 0

∣x + 1∣

x+1

Question Number 18712    Answers: 0   Comments: 0

Question Number 18704    Answers: 1   Comments: 0

Question Number 18702    Answers: 1   Comments: 1

If a sin^2 x+b cos^2 x = c, b sin^2 y+a cos^2 y = d and a tan^2 x = b tan y then (a^2 /b^2 ) is equal to

Ifasin2x+bcos2x=c,bsin2y+acos2y=dandatan2x=btanythena2b2isequalto

Question Number 18701    Answers: 1   Comments: 1

The value of tan 6° tan 42° tan 66° tan 78° is

Thevalueoftan6°tan42°tan66°tan78°is

Question Number 18695    Answers: 1   Comments: 0

if ((n tanθ)/(cos^2 (α−θ)))=((m tan(α−θ))/(cos^2 θ)) then show that 2θ=α−tan^(−1) (((n−m)/(n+m))tanα)

ifntanθcos2(αθ)=mtan(αθ)cos2θthenshowthat2θ=αtan1(nmn+mtanα)

Question Number 18881    Answers: 0   Comments: 0

If (6 (√6) +14)^(2n+1) = m and if f is the fractional part of m, then f m is equal to

If(66+14)2n+1=mandiffisthefractionalpartofm,thenfmisequalto

Question Number 18693    Answers: 1   Comments: 0

prove that 2tan^(−1) [tan(α/2)tan((π/4)−(β/2))] =tan^(−1) (((sinα cosβ)/(cosα +sinβ)))

provethat2tan1[tanα2tan(π4β2)]=tan1(sinαcosβcosα+sinβ)

Question Number 18967    Answers: 0   Comments: 3

Let PQRS be a rectangle such that PQ = a and QR = b. Suppose r_1 is the radius of the circle passing through P and Q and touching RS and r_2 is the radius of the circle passing through Q and R and touching PS. Show that : 5(a + b) ≤ 8(r_1 + r_2 )

LetPQRSbearectanglesuchthatPQ=aandQR=b.Supposer1istheradiusofthecirclepassingthroughPandQandtouchingRSandr2istheradiusofthecirclepassingthroughQandRandtouchingPS.Showthat:5(a+b)8(r1+r2)

Question Number 18681    Answers: 1   Comments: 0

y = ∣sin x∣ + 2 y = ∣x∣ + 2 −π −π ≤ x ≤ π Find the area that have created from the equations above

y=sinx+2y=x+2ππxπFindtheareathathavecreatedfromtheequationsabove

Question Number 18678    Answers: 2   Comments: 0

lim_(x→∞) ((4^(x + 1) + 2^(x +1) − 3^(x + 1) )/(4^(x − 1) + 2^(x − 1 ) + 3^(x + 1) ))

limx4x+1+2x+13x+14x1+2x1+3x+1

Question Number 18667    Answers: 2   Comments: 0

If x=2^(1/3) − 2^(−1/3) , find the value of 2x^3 +6x.

Ifx=21/321/3,findthevalueof2x3+6x.

Question Number 18666    Answers: 1   Comments: 0

An elastic material has a length of 36cm when a load of 40N is hung on it and a length of 45cm when a load of 60N is hung on it. what is the Original length of the string ?

Anelasticmaterialhasalengthof36cmwhenaloadof40Nishungonitandalengthof45cmwhenaloadof60Nishungonit.whatistheOriginallengthofthestring?

Question Number 18884    Answers: 1   Comments: 0

Determine the smallest positive integer x, whose last digit is 6 and if we erase this 6 and put it in left most of the number so obtained, the number becomes 4x.

Determinethesmallestpositiveintegerx,whoselastdigitis6andifweerasethis6andputitinleftmostofthenumbersoobtained,thenumberbecomes4x.

Question Number 18663    Answers: 1   Comments: 2

Find the product of 101 × 10001 × 100000001 × ... × (1000...01) where the last factor has 2^7 − 1 zeros between the ones. Find the number of ones in the product.

Findtheproductof101×10001×100000001×...×(1000...01)wherethelastfactorhas271zerosbetweentheones.Findthenumberofonesintheproduct.

Question Number 18968    Answers: 1   Comments: 1

Find the side lengths of a triangle if side lengths are consecutive integers,and one of whose angles is twice as large as another.

Findthesidelengthsofatriangleifsidelengthsareconsecutiveintegers,andoneofwhoseanglesistwiceaslargeasanother.

Question Number 18655    Answers: 0   Comments: 3

Find the number of odd integers between 30,000 and 80,000 in which no digit is repeated.

Findthenumberofoddintegersbetween30,000and80,000inwhichnodigitisrepeated.

Question Number 18653    Answers: 1   Comments: 0

Solve the inequality, ∣x − 1∣ + ∣x + 1∣ < 4

Solvetheinequality,x1+x+1<4

  Pg 1846      Pg 1847      Pg 1848      Pg 1849      Pg 1850      Pg 1851      Pg 1852      Pg 1853      Pg 1854      Pg 1855   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com