Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 19

Question Number 216582    Answers: 0   Comments: 3

using first principle solve y=((x+2)/( (√x)+2)) is it possible with first principle

usingfirstprinciplesolvey=x+2x+2isitpossiblewithfirstprinciple

Question Number 216579    Answers: 0   Comments: 0

∫_0 ^(π/4) ∫_0 ^(π/4) ((tan(x^2 +y^2 )+sin(x^2 +y^2 ))/(tan(x^2 +y^2 )+cos(x^2 +y^2 )))dxdy

0π40π4tan(x2+y2)+sin(x2+y2)tan(x2+y2)+cos(x2+y2)dxdy

Question Number 216560    Answers: 1   Comments: 0

An object of mass M, initially at rest at the coordinate origin, explodes into three parts. Fragment A has a mass M/2, and fragments B and C have a mass M/4 each. After the explosion, fragment A moves in the +X direction at 10 m/s and fragment B moves in the +Y direction at 8 m/s. Find the direction and speed of fragment C

An object of mass M, initially at rest at the coordinate origin, explodes into three parts. Fragment A has a mass M/2, and fragments B and C have a mass M/4 each. After the explosion, fragment A moves in the +X direction at 10 m/s and fragment B moves in the +Y direction at 8 m/s. Find the direction and speed of fragment C

Question Number 216542    Answers: 0   Comments: 1

if y=cosu then prove that y′=sinu∙u′ by newton′s formula.

ify=cosuthenprovethaty=sinuubynewtonsformula.

Question Number 216538    Answers: 0   Comments: 4

Find all integer solutions of 3^m =2n^2 +1. I only found m=1, 2, 5 by computer from m=1 to m=30000. Is there any greater solutions?

Findallintegersolutionsof3m=2n2+1.Ionlyfoundm=1,2,5bycomputerfromm=1tom=30000.Isthereanygreatersolutions?

Question Number 216537    Answers: 0   Comments: 0

using first principle solve y=((x+2)/( (√x)+2)) is it possible with first principle

usingfirstprinciplesolvey=x+2x+2isitpossiblewithfirstprinciple

Question Number 216534    Answers: 0   Comments: 24

Question Number 216572    Answers: 1   Comments: 0

Question Number 216532    Answers: 2   Comments: 0

Let f :R_+ →R such as f(xy)=f(x)+f(y) 1) Prove that f is derivable iff f is derivable at x=1. 2) Prove that if so, f(x)=Log_a x) where a is positive value to precise

Letf:R+Rsuchasf(xy)=f(x)+f(y)1)Provethatfisderivableifffisderivableatx=1.2)Provethatifso,f(x)=Logax)whereaispositivevaluetoprecise

Question Number 216526    Answers: 1   Comments: 0

Question Number 216525    Answers: 2   Comments: 0

Question Number 216515    Answers: 2   Comments: 0

Question Number 216513    Answers: 0   Comments: 0

Prove or disprove that: If p=(√(Σ_(k=0) ^n 3^k )) (n>0) is an integer, then p is prime.

Proveordisprovethat:Ifp=nk=03k(n>0)isaninteger,thenpisprime.

Question Number 216507    Answers: 0   Comments: 1

Question Number 216493    Answers: 1   Comments: 0

Res_(z=c) {f(z)}=(1/(2πi)) ∮_( C) f(z)dz Res_(z=1) {((z^(21) +z^2 +z+1)/((z−1)^3 ))}=(1/(2πi)) ∮_( C) ((z^(21) +z^2 +z+1)/((z−1)^3 ))dz (1/(2πi)) ∮_( C) (((z^(21) +z^2 +z+1)/((z−1)^2 ))/(z−1))dz=lim_(z→1) ((z^(21) +z^2 +z+1)/((z−1)^2 )) L′hosiptal :) lim_(z→1) ((21z^(20) +2z+1)/(2(z−1))) and... Twice!! lim_(z→1) ((420z^(19) +2)/2)=211 ∴Res_(z=1) {f(z)}=211 ★Caution★ f(α)′′=′′(1/(2πi)) ∮_( C) ((f(z))/(z−α)) dz Why did I use big quotes for this equation?? because the conditions for establshing this equation are that path C must be a simple closed curve and there must be no singularity in path C

Resz=c{f(z)}=12πiCf(z)dzResz=1{z21+z2+z+1(z1)3}=12πiCz21+z2+z+1(z1)3dz12πiCz21+z2+z+1(z1)2z1dz=limz1z21+z2+z+1(z1)2Lhosiptal:)limz121z20+2z+12(z1)and...Twice!!limz1420z19+22=211Resz=1{f(z)}=211Cautionf(α)=12πiCf(z)zαdzWhydidIusebigquotesforthisequation??becausetheconditionsforestablshingthisequationarethatpathCmustbeasimpleclosedcurveandtheremustbenosingularityinpathC

Question Number 216491    Answers: 2   Comments: 0

Question Number 216489    Answers: 1   Comments: 1

find residuo ((x^(21) +x^2 +x+1)/((x−1)^3 ))

findresiduox21+x2+x+1(x1)3

Question Number 216487    Answers: 1   Comments: 2

Find the value of ω^7 + ω^8 + ω^(12) where ω is omega function.

Findthevalueofω7+ω8+ω12whereωisomegafunction.

Question Number 216486    Answers: 1   Comments: 0

∫_( 0) ^( 1) x(√(x ((x ((x ((x ...))^(1/5) ))^(1/4) ))^(1/3) )) dx

01xxxxx...543dx

Question Number 216485    Answers: 2   Comments: 0

Solve for x in: i^x = 2

Solveforxin:ix=2

Question Number 216478    Answers: 1   Comments: 1

Question Number 216477    Answers: 2   Comments: 0

Question Number 216471    Answers: 1   Comments: 3

Question Number 216445    Answers: 2   Comments: 2

Prove that Γ((1/2)) = (√π)

ProvethatΓ(12)=π

Question Number 216437    Answers: 3   Comments: 0

Question Number 216454    Answers: 0   Comments: 7

Reponse a l exercice N8: Reponses par ordre:(1,2,3,4,5,6) imsge 1 imsge 2 image 3 imsge 5 imsge 4 imsge 6

ReponsealexerciceN8:Reponsesparordre:(1,2,3,4,5,6)imsge1imsge2image3imsge5imsge4imsge6

  Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com