Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 1945

Question Number 7582    Answers: 1   Comments: 1

Question Number 7579    Answers: 1   Comments: 0

2×2

2×2

Question Number 7577    Answers: 0   Comments: 0

p = ((a[1 − (1 + r)^(−n) ])/r) Make r the subject of the fomular.

p=a[1(1+r)n]rMakerthesubjectofthefomular.

Question Number 7562    Answers: 0   Comments: 2

(U_n )= 2,3,5,6,7,8,10,11,12,13,14,.... find U_n

(Un)=2,3,5,6,7,8,10,11,12,13,14,....findUn

Question Number 7552    Answers: 1   Comments: 0

(√4)+5 =

4+5=

Question Number 7545    Answers: 0   Comments: 3

y^2 + x^2 = 2^x + 2^y Find the possible greatest value of ∣x − y∣

y2+x2=2x+2yFindthepossiblegreatestvalueofxy

Question Number 7544    Answers: 0   Comments: 7

Question Number 7541    Answers: 0   Comments: 5

Question Number 7538    Answers: 0   Comments: 0

Q. ∫((√(x^4 +1))/(x^2 −1)) dx

Q.x4+1x21dx

Question Number 7532    Answers: 0   Comments: 4

Find x_n (n∈Z) satisfying x_0 =0, x_1 =1 and x_(n+1) =x_n (√(x_(n−1) ^2 +1))+x_(n−1) (√(x_n ^2 +1)) for n≥1.

Findxn(nZ)satisfyingx0=0,x1=1andxn+1=xnxn12+1+xn1xn2+1forn1.

Question Number 7526    Answers: 1   Comments: 0

If a, b, c are in AP then (a/(bc)) , (1/c) , (2/b) are in

Ifa,b,careinAPthenabc,1c,2barein

Question Number 7525    Answers: 0   Comments: 1

The sum of the squares of three distinct real numbers which are in GP is S^2 . If their sum is α S, then

ThesumofthesquaresofthreedistinctrealnumberswhichareinGPisS2.IftheirsumisαS,then

Question Number 7524    Answers: 1   Comments: 1

If a, b, c are in AP; b, c, d are in GP and c, d, e are in HP, then a, c, e are in

Ifa,b,careinAP;b,c,dareinGPandc,d,eareinHP,thena,c,earein

Question Number 7523    Answers: 0   Comments: 0

If a, b, c are in AP; b, c, d are in GP and c, d, e are in HP, then a, c, e are in

Ifa,b,careinAP;b,c,dareinGPandc,d,eareinHP,thena,c,earein

Question Number 7522    Answers: 1   Comments: 2

If n Arithmetic means are inserted between two quantities a and b, then their sum is equal to

IfnArithmeticmeansareinsertedbetweentwoquantitiesaandb,thentheirsumisequalto

Question Number 7519    Answers: 0   Comments: 4

A (2 × 3) rectangle and a (3 × 4) rectangle are contain within a square without over laping at any inferior point , and the sides of the square are parallel to the sides of the two given rectangles. what is the smallest possible area of the square.

A(2×3)rectangleanda(3×4)rectanglearecontainwithinasquarewithoutoverlapingatanyinferiorpoint,andthesidesofthesquareareparalleltothesidesofthetwogivenrectangles.whatisthesmallestpossibleareaofthesquare.

Question Number 7514    Answers: 1   Comments: 0

Question Number 7511    Answers: 1   Comments: 0

Factorise the expression 9x^4 + (1/x^4 ) +2.

Factorisetheexpression9x4+1x4+2.

Question Number 7510    Answers: 0   Comments: 0

Factorise the expression 9x^4 + (1/x^4 ) +2.

Factorisetheexpression9x4+1x4+2.

Question Number 7507    Answers: 0   Comments: 0

Given r, t, j >0 and n≥1; Prove that (([Σ_(p_1 =1) ^n (p_1 ^r +r)+Σ_(p_2 =1) ^n (p_2 ^t +t)]^2 )/(n^2 [(n!)^((r+t)/n) +r(n!)^(t/n) +t(n!)^(r/n) +rt])) +(([Σ_(p_2 =1) ^n (p_2 ^t +t)+Σ_(p_3 =1) ^n (p_3 ^j +j)]^2 )/(n^2 [(n!)^((t+j)/n) +t(n!)^(j/n) +j(n!)^(t/n) +tj])) ≥ 8 By: Mr. Chheang Chantria

Givenr,t,j>0andn1;Provethat[np1=1(p1r+r)+np2=1(p2t+t)]2n2[(n!)r+tn+r(n!)tn+t(n!)rn+rt]+[np2=1(p2t+t)+np3=1(p3j+j)]2n2[(n!)t+jn+t(n!)jn+j(n!)tn+tj]8By:Mr.ChheangChantria

Question Number 7506    Answers: 1   Comments: 0

∫{((1−(√x))/(1+(√x)))}^(1/2) (dx/x)=?

{1x1+x}12dxx=?

Question Number 7501    Answers: 1   Comments: 0

Compute lim_(A→+∞) {(1/A)∫_1 ^A A^(1/x) dx}. (IMC 2015)

ComputelimA+{1A1AA1xdx}.(IMC2015)

Question Number 7499    Answers: 0   Comments: 0

Let E be a banach space , Y is normed space and suppose that {Ta : a∈A} ⊆ B (E, Y) If {Tax : a∈A} ⊆ Y is bounded , for all x∈E, then {∥Ta∥ : a∈A} is bounded.

LetEbeabanachspace,Yisnormedspaceandsupposethat{Ta:aA}B(E,Y)If{Tax:aA}Yisbounded,forallxE,then{Ta:aA}isbounded.

Question Number 7500    Answers: 1   Comments: 0

5^(√(x )) − 5^(x − 7) = 100 Find the value of x. x = 9 please workings.

5x5x7=100Findthevalueofx.x=9pleaseworkings.

Question Number 7489    Answers: 1   Comments: 0

A pen with a cylindrical barrel of diameter 2 cm and height 10.5 cm, filled with ink, can write 3300 words. How many words can be written with that pen using 100 ml of ink. (Take 1cc = 1 ml)

Apenwithacylindricalbarrelofdiameter2cmandheight10.5cm,filledwithink,canwrite3300words.Howmanywordscanbewrittenwiththatpenusing100mlofink.(Take1cc=1ml)

Question Number 7488    Answers: 1   Comments: 0

If A= [(1,2,3),(6,5,4) ] , then A^T =____.

IfA=[123654],thenAT=____.

  Pg 1940      Pg 1941      Pg 1942      Pg 1943      Pg 1944      Pg 1945      Pg 1946      Pg 1947      Pg 1948      Pg 1949   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com