Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 212

Question Number 194809    Answers: 2   Comments: 0

If f(x)=ax^2 −5x+3 and g(x)=3x−3 intersection at points (1,h) and (3,t). Find

Iff(x)=ax25x+3andg(x)=3x3intersectionatpoints(1,h)and(3,t).Find

Question Number 194808    Answers: 0   Comments: 4

suppose a,b,c are positive real numbers prove the inequality (((a+b)/2))(((b+c)/2))(((c+a)/2))≥(((a+b+c)/3))(((abc)^2 ))^(1/3)

supposea,b,carepositiverealnumbersprovetheinequality(a+b2)(b+c2)(c+a2)(a+b+c3)(abc)23

Question Number 194796    Answers: 1   Comments: 0

A 1m^2 rectangle which length is less than 1 is a square. Why?

A1m2rectanglewhichlengthislessthan1isasquare.Why?

Question Number 194791    Answers: 1   Comments: 0

x

x

Question Number 194790    Answers: 1   Comments: 0

Question Number 194786    Answers: 1   Comments: 0

x^n +y^n =¿ (n∈N^∗ )

xn+yn=¿(nN)

Question Number 194785    Answers: 0   Comments: 0

∫∫ x^2 +y^2 dxdy (D=x^4 +y^4 ≤1)

x2+y2dxdy(D=x4+y41)

Question Number 194781    Answers: 0   Comments: 0

f_(n ) the general sentence is seqiencee fibonacci. prove that : f_(2n−1) =f_n ^2 +f_(n−1) ^2

fnthegeneralsentenceisseqienceefibonacci.provethat:f2n1=fn2+fn12

Question Number 194779    Answers: 1   Comments: 4

If a divided by b gives q remaining r Then (a/b) = q,rrr... in base b+1

IfadividedbybgivesqremainingrThenab=q,rrr...inbaseb+1

Question Number 194767    Answers: 2   Comments: 0

tan θ = 2 ((8sin θ+5cos θ)/(sin^3 θ+cos^3 θ+cos θ)) =?

tanθ=28sinθ+5cosθsin3θ+cos3θ+cosθ=?

Question Number 194766    Answers: 2   Comments: 0

1+2cot 2x cot x = 3 x=?

1+2cot2xcotx=3x=?

Question Number 194759    Answers: 1   Comments: 1

∫_0 ^( 1) ∫_0 ^( 1) (((1+x^2 )/(1+x^2 +y^2 ))) dxdy

0101(1+x21+x2+y2)dxdy

Question Number 194756    Answers: 3   Comments: 0

b

b

Question Number 194736    Answers: 0   Comments: 2

{: }

Question Number 194735    Answers: 1   Comments: 0

Question Number 194732    Answers: 2   Comments: 1

Question Number 194715    Answers: 0   Comments: 0

Question Number 194713    Answers: 0   Comments: 2

Question Number 194709    Answers: 1   Comments: 0

Show that in fibonacci sequence f_(3n) =f_n ^3 +f_(n+1) ^3 −f_(n−1) ^3

Showthatinfibonaccisequencef3n=fn3+fn+13fn13

Question Number 194710    Answers: 0   Comments: 21

let p be a prime number & let a_1 ,a_2 ,a_3 ,...,a_(p ) be integers show that , there exists an integer k such that the numbers a_1 +k, a_2 +k,a_3 +k,....,a_p +k produce at least (1/2)p distinct remainders when divided by p.

letpbeaprimenumber&leta1,a2,a3,...,apbeintegersshowthat,thereexistsanintegerksuchthatthenumbersa1+k,a2+k,a3+k,....,ap+kproduceatleast12pdistinctremainderswhendividedbyp.

Question Number 194700    Answers: 0   Comments: 2

Question Number 194697    Answers: 2   Comments: 0

Question Number 194695    Answers: 1   Comments: 0

Question Number 194693    Answers: 1   Comments: 0

if f_n =f_(n−1) +f_(n−2) ; f_1 =f_2 =1 then prove that 5∣f_(5n)

iffn=fn1+fn2;f1=f2=1thenprovethat5f5n

Question Number 194685    Answers: 1   Comments: 0

Question Number 194662    Answers: 0   Comments: 2

∫_0 ^(Π/2) (√(4sin^2 t+cos^2 t)) dt

0Π24sin2t+cos2tdt

Question Number 194654    Answers: 1   Comments: 0

  Pg 207      Pg 208      Pg 209      Pg 210      Pg 211      Pg 212      Pg 213      Pg 214      Pg 215      Pg 216   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com