Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 311

Question Number 184875    Answers: 1   Comments: 0

Question Number 184873    Answers: 1   Comments: 0

Find the real number satisfying x=(√(1+(√(1+(√(1+x))))))

Findtherealnumbersatisfyingx=1+1+1+x

Question Number 184872    Answers: 0   Comments: 0

An odd function f(x) whose domain is R satisfies f(x)=f(x+2). When x ∈ (0, 1), f(x)=−2x^2 +ax−2. If f has 2023 zeros in [0, 1011]. Then the range of a can be ? A. [−6, −2(√2)] B. [−4, −2(√2)] C. [−8, −6] D. [−6, −4]

Anoddfunctionf(x)whosedomainisRsatisfiesf(x)=f(x+2).Whenx(0,1),f(x)=2x2+ax2.Iffhas2023zerosin[0,1011].Thentherangeofacanbe?A.[6,22]B.[4,22]C.[8,6]D.[6,4]

Question Number 184869    Answers: 1   Comments: 0

Question Number 184866    Answers: 1   Comments: 1

Question Number 184861    Answers: 0   Comments: 0

x ∈ [−0,5 ; 0,5] find the product of all x′s 3(cos^2 πx + sinπy) + 2 = 9 + 3 ∣sinπx ∙ sinπy∣−sinπy

x[0,5;0,5]findtheproductofallxs3(cos2πx+sinπy)+2=9+3sinπxsinπysinπy

Question Number 184859    Answers: 2   Comments: 0

Lim_( x→∞) x^( 4) ( 1− cos (1− cos((2/x))))=?

Limxx4(1cos(1cos(2x)))=?

Question Number 184858    Answers: 1   Comments: 0

Σ_(n=o) ^(+oo) (((−1)^n x^(2n+1) )/(4n^2 −1))

+oon=o(1)nx2n+14n21

Question Number 184856    Answers: 0   Comments: 0

f(x)= (√( ∣ x_ ^ ∣ −∣ x−_ ^ ⌊ax⌋ ∣)) ; a ∈ [ 3 , 4 ) find : { (( D_( f) =? (domain ))),(( R_( f) =? (range ))) :}

f(x)=xxax;a[3,4)find:{Df=?(domain)Rf=?(range)

Question Number 184845    Answers: 0   Comments: 0

x ∈ [−0,5 ; 0,5] find the product of all x′s 1. 4sin^2 πx−4sinπx + 2 = 2sin^2 πy−1 2. 4sinπx = 4sinπy − 7 − (1/(sin^2 πx))

x[0,5;0,5]findtheproductofallxs1.4sin2πx4sinπx+2=2sin2πy12.4sinπx=4sinπy71sin2πx

Question Number 184843    Answers: 0   Comments: 0

Question Number 184841    Answers: 1   Comments: 0

Question Number 184839    Answers: 3   Comments: 0

xy − 3x = 27 −5y find all (x , y) in Z^2

xy3x=275yfindall(x,y)inZ2

Question Number 184832    Answers: 4   Comments: 1

Given the acceleration a=−4sin2t, initial velocity v(0)=2, and the initial position of the body as s(0)=−3, find the body′s position at time t. Hi

Giventheaccelerationa=4sin2t,initialvelocityv(0)=2,andtheinitialpositionofthebodyass(0)=3,findthebodyspositionattimet.Hi

Question Number 184828    Answers: 0   Comments: 1

Find x in terms of c ∀ 0<c<(2/(3(√3))) (3x^2 −1)(3x^2 +36x−1)^2 ={4(x^3 −x−c)+9(7x^2 +1)}^2

Findxintermsofc0<c<233(3x21)(3x2+36x1)2={4(x3xc)+9(7x2+1)}2

Question Number 184823    Answers: 1   Comments: 0

Lim_( x→ 0^( +) ) (( 1− cos ( 1− cos((√x) )))/x^( 4) )

Limx0+1cos(1cos(x))x4

Question Number 184822    Answers: 1   Comments: 0

Question Number 184819    Answers: 2   Comments: 0

For 0≤x≤1 , maximum value of f(x)=x(√(1−x+(√(1−x)))) is __

For0x1,maximumvalueoff(x)=x1x+1xis__

Question Number 184798    Answers: 0   Comments: 1

Show that lim_(x→0) (x/(∣x∣)) does not exist

Showthatlimx0xxdoesnotexist

Question Number 184797    Answers: 0   Comments: 1

Show that lim_(x→0) ((e^(1/x) −1)/(e^(1/x) +1)) does not exist

Showthatlimx0e1x1e1x+1doesnotexist

Question Number 184796    Answers: 1   Comments: 2

Evaluate lim_(x→(π/6)) (((√3)sin x−cos x)/(x−(π/6)))

Evaluatelimxπ63sinxcosxxπ6

Question Number 184795    Answers: 1   Comments: 1

Evaluate lim_(x→0) ((1−cos x(√(cos 2x)) )/x^2 )

Evaluatelimx01cosxcos2xx2

Question Number 184794    Answers: 4   Comments: 2

Evaluate lim_(x→2) ((x^5 −32)/(x^3 −8))

Evaluatelimx2x532x38

Question Number 184793    Answers: 1   Comments: 0

Evaluate lim_(x→2) ((x^2 −4)/( (√(3x−2))−(√(x+2))))

Evaluatelimx2x243x2x+2

Question Number 184792    Answers: 1   Comments: 2

Evaluate lim_(x→0) ((tan x−sin x)/(sin^3 x))

Evaluatelimx0tanxsinxsin3x

Question Number 184791    Answers: 0   Comments: 2

Evaluate lim_(x→0) ((e^x +e^(−x) −2)/x^2 )

Evaluatelimx0ex+ex2x2

  Pg 306      Pg 307      Pg 308      Pg 309      Pg 310      Pg 311      Pg 312      Pg 313      Pg 314      Pg 315   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com