Question and Answers Forum |
AllQuestion and Answers: Page 372 |
![]() |
Eeasy integral.... đ = âŤ_(ââŤ_0 ^( â) e^( âx^( 2) ) dx) ^( âŤ_0 ^( â) e^( âx^( 2) ) dx) sin^( 2) (t).ln^( 3) ( t + (â(1+t^( 2) )))dt âââm.nâââ |
If x^3 +(1/x^3 )=1, prove that x^5 +(1/x^5 )=â(x^4 +(1/x^4 )) |
![]() |
![]() |
![]() |
sequence V_(n+1) âV_n =n+3^n . Find V_n . |
![]() |
f(x,y)= { ((e^(1/(r^2 â1)) if r<1, where r=âĽ(x,y)âĽ)),((0 if râĽ1)) :} show that f(x,y) is continuous in R^2 |
⍠(dx/(a+bcosx)) ⍠(dx/(aâbsinx)) |
![]() |
lim_(xâ0) ((sin^2 (x)âsin (x^2 ))/(x^2 (cos^2 (x)âcos (x^2 ))))=? |
![]() |
{ ((p^3 +q^3 =r^2 )),((p^3 +r^3 =q^2 )),((q^3 +r^3 =p^2 )) :} â20pqr =? |
![]() |
![]() |
look the anser |
![]() |
đ=âŤ_0 ^( 1) (( ( tanh^( â1) (x))^2 )/((1+x )^( 2) )) dx = ? âş solution âť note : tanh^( â1) (x)=â (1/2) ln(((1âx)/(1+x))) đ= (1/4)âŤ_0 ^( 1) (( ln^( 2) (((1âx)/(1+x)) ))/((1+x )^( 2) )) dx =^(((1âx)/(1+x)) = t) (1/8)âŤ_0 ^( 1) ln^( 2) (t )dt =(1/8_ ) { [t.ln^( 2) (t)]_0 ^( 1) â2âŤ_0 ^( 1) ln(t)dt} =â (1/4) âŤ_0 ^( 1) ln(t)dt= (1/4) â m.n âś |
Solve the equation: 2^x + 3^x â 4^x + 6^x â 9^x = 1 |
![]() |
x^3 +(1/x^3 )=1 (((x^5 +(1/x^5 ))^3 â1)/(x^5 +(1/x^5 )))=? Q#176387 reposted for a new answer. |
Given { ((sin a+sin b=((â2)/2))),((cos a+cos b=((â6)/2))) :} for a,b real numbers. Evaluate sin (a+b). (A)((â3)/2) (D) â((â3)/2) (B) (2/( (â3))) (E)â(2/( (â3))) (C) ((â3)/4) |
4^(x^2 â2x+2) â2^(x^2 â2x+3) +2=2^(x^2 â2x+2) x=? |
lim_(xâ1) ((lnx)/(1+lnxâ1))=? |
(1) âŤ^(Ď/2) _(Ď/3) ((1+sinx)/(cosx)) dx=? |
Pg 367 Pg 368 Pg 369 Pg 370 Pg 371 Pg 372 Pg 373 Pg 374 Pg 375 Pg 376 |