Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 373

Question Number 176638    Answers: 1   Comments: 0

lim_(x→0) ((sin^2 (x)−sin (x^2 ))/(x^2 (cos^2 (x)−cos (x^2 ))))=?

limx0sin2(x)sin(x2)x2(cos2(x)cos(x2))=?

Question Number 176637    Answers: 0   Comments: 0

Question Number 176636    Answers: 2   Comments: 2

{ ((p^3 +q^3 =r^2 )),((p^3 +r^3 =q^2 )),((q^3 +r^3 =p^2 )) :} ⇒20pqr =?

{p3+q3=r2p3+r3=q2q3+r3=p220pqr=?

Question Number 176610    Answers: 1   Comments: 0

Question Number 176607    Answers: 1   Comments: 0

Question Number 176603    Answers: 2   Comments: 6

look the anser

looktheanser

Question Number 176595    Answers: 2   Comments: 0

Question Number 176594    Answers: 0   Comments: 1

𝛗=∫_0 ^( 1) (( ( tanh^( −1) (x))^2 )/((1+x )^( 2) )) dx = ? ≺ solution ≻ note : tanh^( −1) (x)=− (1/2) ln(((1−x)/(1+x))) 𝛗= (1/4)∫_0 ^( 1) (( ln^( 2) (((1−x)/(1+x)) ))/((1+x )^( 2) )) dx =^(((1−x)/(1+x)) = t) (1/8)∫_0 ^( 1) ln^( 2) (t )dt =(1/8_ ) { [t.ln^( 2) (t)]_0 ^( 1) −2∫_0 ^( 1) ln(t)dt} =− (1/4) ∫_0 ^( 1) ln(t)dt= (1/4) ◂ m.n ▶

ϕ=01(tanh1(x))2(1+x)2dx=?solutionnote:tanh1(x)=12ln(1x1+x)ϕ=1401ln2(1x1+x)(1+x)2dx=1x1+x=t1801ln2(t)dt=18{[t.ln2(t)]01201ln(t)dt}=1401ln(t)dt=14m.n

Question Number 176592    Answers: 2   Comments: 0

Solve the equation: 2^x + 3^x − 4^x + 6^x − 9^x = 1

Solvetheequation:2x+3x4x+6x9x=1

Question Number 176589    Answers: 1   Comments: 0

Question Number 176598    Answers: 1   Comments: 0

x^3 +(1/x^3 )=1 (((x^5 +(1/x^5 ))^3 −1)/(x^5 +(1/x^5 )))=? Q#176387 reposted for a new answer.

x3+1x3=1(x5+1x5)31x5+1x5=?You can't use 'macro parameter character #' in math mode

Question Number 176581    Answers: 1   Comments: 0

Given { ((sin a+sin b=((√2)/2))),((cos a+cos b=((√6)/2))) :} for a,b real numbers. Evaluate sin (a+b). (A)((√3)/2) (D) −((√3)/2) (B) (2/( (√3))) (E)−(2/( (√3))) (C) ((√3)/4)

Given{sina+sinb=22cosa+cosb=62fora,brealnumbers.Evaluatesin(a+b).(A)32(D)32(B)23(E)23(C)34

Question Number 176580    Answers: 1   Comments: 0

4^(x^2 −2x+2) −2^(x^2 −2x+3) +2=2^(x^2 −2x+2) x=?

4x22x+22x22x+3+2=2x22x+2x=?

Question Number 176571    Answers: 1   Comments: 0

lim_(x→1) ((lnx)/(1+lnx−1))=?

limx1lnx1+lnx1=?

Question Number 176570    Answers: 2   Comments: 0

(1) ∫^(π/2) _(π/3) ((1+sinx)/(cosx)) dx=?

(1)π3π21+sinxcosxdx=?

Question Number 176566    Answers: 0   Comments: 0

−−−− calculate: Φ = Σ_(n=0) ^( ∞) (( 1)/((2n+1 ).e^( 4n+2) )) = ? where ” e ” is euler number. ≺ solution ≻ Φ = Σ_(n=0) ^∞ (1/e^( 4n+2) ) ∫_0 ^( 1) x^( 2n) dx = (1/e^( 2) ) ∫_0 ^( 1) Σ_(n=0) ^∞ ((( x^2 )/e^( 4) ) )^( n) dx = (1/e^( 2) ) ∫_0 ^( 1) (( 1)/(1− ((x/e^( 2) ) )^( 2) )) dx=(1/(2e^( 2) )) ∫_0 ^( 1) (1/(1−(x/e^( 2) ))) +(1/(1+(x/e^( 2) )))dx = (1/2) ln ( ((1+(1/e^( 2) ))/(1−(1/e^( 2) ))) ) = tanh^( −1) ((( 1)/e^( 2) ) ) ∴ Φ = coth^( −1) ( e^( 2) ) ■ m.n

calculate:Φ=n=01(2n+1).e4n+2=?whereeiseulernumber.solutionΦ=n=01e4n+201x2ndx=1e201n=0(x2e4)ndx=1e20111(xe2)2dx=12e20111xe2+11+xe2dx=12ln(1+1e211e2)=tanh1(1e2)Φ=coth1(e2)m.n

Question Number 176565    Answers: 0   Comments: 0

Question Number 176564    Answers: 0   Comments: 0

Question Number 176563    Answers: 1   Comments: 0

is there an iOS version for this app? please

isthereaniOSversionforthisapp?please

Question Number 176555    Answers: 1   Comments: 2

ABCD−convex quadrilateral M∈Int(ABCD) , F−area , s−semiperimetr a , b , c−sides. Prove that: ((MA^4 )/b) + ((MB^4 )/c^4 ) + ((MC^4 )/d) + ((MD^4 )/a) ≥ ((2F^2 )/s)

ABCDconvexquadrilateralMInt(ABCD),Farea,ssemiperimetra,b,csides.Provethat:MA4b+MB4c4+MC4d+MD4a2F2s

Question Number 176554    Answers: 2   Comments: 0

x + (1/x) =ϕ (Golden ratio) then x^( 2000) +(( 1)/x^( 2000) ) = ?

x+1x=φ(Goldenratio)thenx2000+1x2000=?

Question Number 176576    Answers: 0   Comments: 0

Question Number 176549    Answers: 1   Comments: 0

donner la forme trigonometrique de 1/4(cosΠ/9+isinΠ/9)

donnerlaformetrigonometriquede1/4(cosΠ/9+isinΠ/9)

Question Number 176547    Answers: 0   Comments: 0

Question Number 176546    Answers: 0   Comments: 0

Question Number 176542    Answers: 1   Comments: 0

Ω = ∫_0 ^( 1) (( x.tanh^( −1) (x))/((1+x)^( 2) ))dx= (1/(24)) (π^( 2) −6)

Ω=01x.tanh1(x)(1+x)2dx=124(π26)

  Pg 368      Pg 369      Pg 370      Pg 371      Pg 372      Pg 373      Pg 374      Pg 375      Pg 376      Pg 377   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com