Question and Answers Forum |
AllQuestion and Answers: Page 376 |
solve for x 2^x .3^x^2 = 6 |
7+67+667+6667+.....(n terms)=? |
A=β«9xcos 2x dx |
exercise Consider a polygon with an odd number π» of vertices. We connect any 3 vertices of this polygon to form a triangle. What is the probability that this triangle contains the center of the circle circumscribing the polygon? |
Trouver la somme de S_n Si S_n =1+11+111+...+1111...111 |
(d^2 y/dx^2 ) βtan (x)(dy/dx) = 0 |
solve for x x_(n+1) =rx_n (1βx_n ) |
if (x+1)^4 (β4)=x+1 find x |
![]() |
f(4) = (1/4) and f(8) = (1/2) β«_4 ^8 (( [fβ²(x)]^2 )/([f(x)]^4 ))dx = 1 then f(6)= ? |
![]() |
if (x+1)_(β4) ^4 =x+1 find x |
J=β«_0 ^(Ο/2) ((sin x)/(1+sin x+cos x)) dx |
β«_5 ^7 (([ (1/4)x+3 ])/( (β(9x^2 β12x+4)))) dx=? [ ..] =floor function |
![]() |
solve for x log_(β£sinxβ£ ) (x^2 β8x+23) > (3/(log_2 β£sinxβ£ )) |
lim_(xβ(Ο/4)) ((sin xβcos x)/(tan ((Ο/8)β(x/2)))) =? |
ax^2 +bx+c = 0 x = ((βbΒ±(β(b^2 β4ac)))/(2a)) Example: Find the values of x in the equation x^2 +5x+4 = 0 In order to solve for that, letβ²s first take a look on what are the values of a, b and c 1x^2 + 5x + 4 = 0 a = 1 ; b = 5 ; c = 4 Now, using the quadratic formula x = ((β5Β±(β(5^2 β4(1)(4))))/(2(1))) = ((β5Β±(β(25β16)))/2) = ((β5Β±3)/2) |
β«_0 ^(Ο/2) ((sin^3 x)/(sin x+cos x)) dx =? |
lim_(nββ) (Ξ£_(j=1) ^n Ξ£_(i = 1) ^n ((i+j)/(i^2 +j^2 ))β((Ο/2)+ ln 2)n + ln n) = ? |
if x^6 + y^6 = 9 x^4 + y^4 = 5 then x^2 +y^2 =? |
Solve it by hornerβ²s method. (2x^3 y^2 +3x^2 yβ4x+5yβ12)Γ·(xβ3) |
β«_0 ^β (x^5 /( (β(3βx))))dx |
solve the inequalities Q.(1) ((1+log_a ^2 x)/(1+log_a x)) > 1 , 0<a<1 Q.(2) log_x ((4x+5)/(6β5x)) < β1 |
solve (x β R ). β (( 2^( x) +1)/3) β + β 4^( (x/2)) β = 4 ββββββ |
{ ((4x=2(mod 9))),((7x=2 (mod 13))) :} |
Pg 371 Pg 372 Pg 373 Pg 374 Pg 375 Pg 376 Pg 377 Pg 378 Pg 379 Pg 380 |