Question and Answers Forum |
AllQuestion and Answers: Page 485 |
60!=abc…nm000…0 m=? n=? |
![]() |
![]() |
Given a, b ∈ R. Show that : [a]+[b]≤[a+b]≤[a]+[b]+1 |
Show that ∀ a, b ∈ R, 1. ∣∣x∣−∣y∣∣≤∣x−y∣ 2. 1+∣xy−1∣≤(1+∣x−1∣)(1+∣y−1∣). |
![]() |
solve: 1. ∫(1/(sinx))dx 2.∫(1/(cosx))dx |
en posant x=t−(1/t) ∫^(+oo) _0 ((1+t^2 )/(1+t^4 ))dt |
Min f(x)= cos 2x +(√3) sin 2x −2(√3) cos x−2sin x is ... |
![]() |
![]() |
180<θ<270 and 2sinθ−cos θ=0 faind volue of sin θ×cos θ=? |
Prove that; ∫_(−∞) ^∞ y tan x + y^3 tan x dx = undefined |
pour quelle valeur α la serie converge Σ_(n=2) (ln(n)+αln(n−(1/n)) |
∫ ((In(x^2 .e^(cos2) ))/x) dx |
∫ A.^5 (√(x^3 )) dx |
soit K un corps; pour toute permutation σ de S_n , on note P(σ) sa matrice dans la base canonique de K^n . montrer que deux permutations σ_1 et σ_2 sont conjugues dans S_n si et seulement si P(σ_1 ) et P(σ_2 ) sont semblables. |
I = ∫_0 ^( 1) (( Li_( 2) ( x ))/(1 + x)) dx = ? −−−−−− |
![]() |
(1/( (√(2−x)))) > (1/(x−1)) |
when F does not contain y explicity . Find the extremals of ∫_x_1 ^x_2 ((y′^2 )/x^2 )dx |
6 boys and 6 girls go to an exhibition and the cost of ticket is Rs 10.Each girl has a 10 rupees note while each boy has a 20 rupees note. They stand in a queue at the counter and the cashier does not have any money at the begining , then the number of ways of arranging the boys and girls so that no one waits for a change is A) 132 B) 264 C) 132(720)^2 D)264(720)^2 |
prove that ( _( k−1) ^(2k) ) =^? Σ_(r=0) ^(k−1) ( _( r) ^( k) ) (^( ) _( r+1) ^( k) ) −−−− |
![]() |
![]() |
prove Ω= ∫_0 ^( ∞) (( (√x))/(( 1+x +x^( 2) )^( 3) )) dx =^? ((π(√3))/(36)) −−m.n−− |
Pg 480 Pg 481 Pg 482 Pg 483 Pg 484 Pg 485 Pg 486 Pg 487 Pg 488 Pg 489 |