Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 487

Question Number 165240    Answers: 1   Comments: 0

soit la serie de fonction Σ_(n=2 ) (x^n /(nx+ln(n))) etudie la convergence simple sur [0,1[

soitlaseriedefonctionn=2xnnx+ln(n)etudielaconvergencesimplesur[0,1[

Question Number 165234    Answers: 0   Comments: 1

Question Number 165253    Answers: 3   Comments: 0

Question Number 165232    Answers: 1   Comments: 1

Question Number 165250    Answers: 0   Comments: 1

Question Number 165229    Answers: 0   Comments: 1

Σ_(i=1) ^(n=∞) lim_(x→0) ((xyn^x )/(nx_1 ))xz∫((xn^n x)/(nx^n y))dn (√(c^n +n_1 )) ∫((xn^(n!) )/(n^n xn^x ))dn

n=i=1limx0xynxnx1xzxnnxnxnydncn+n1xnn!nnxnxdn

Question Number 165226    Answers: 1   Comments: 0

make x the subject of the formula; a^x +bx+c=0

makexthesubjectoftheformula;ax+bx+c=0

Question Number 165217    Answers: 2   Comments: 5

Question Number 165218    Answers: 1   Comments: 1

Question by M.N July Φ = ∫_0 ^( 1) ((ln(1 + x^4 + x^8 ))/x)dx Φ =^(x=x^(1/2) ) (1/2)∫_0 ^( 1) ((ln(1+x^2 +x^4 ))/x)dx Φ = (1/2)∫_0 ^( 1) ((ln(((1−x^2 )/(1−x^6 ))))/x)dx = (1/2)∫_0 ^( 1) ((ln(1−x^2 ))/x)dx − (1/2)∫_0 ^( 1) ((ln(1−x^6 ))/x)dx Φ = (1/2)(A − B) A =^(x=x^(1/2) ) (1/2)∫_0 ^( 1) ((ln(1−x))/x)dx = (1/2)Li_2 (1) B =^(x=x^(1/6) ) (1/6)∫_0 ^( 1) ((x^((1/6)−1) ln(1−x))/x^(1/6) )dx B = (1/6)∫_0 ^( 1) ((ln(1−x))/x)dx = (1/6)Li_2 (1) Φ = (1/2)((1/2)Li_2 (1)−(1/6)Li_2 (1)) = (1/6)Li_2 (1) 𝚽 = ((𝛇(2))/3) ▲▲▲

QuestionbyM.NJulyΦ=01ln(1+x4+x8)xdxΦ=x=x121201ln(1+x2+x4)xdxΦ=1201ln(1x21x6)xdx=1201ln(1x2)xdx1201ln(1x6)xdxΦ=12(AB)A=x=x121201ln(1x)xdx=12Li2(1)B=x=x161601x161ln(1x)x16dxB=1601ln(1x)xdx=16Li2(1)Φ=12(12Li2(1)16Li2(1))=16Li2(1)Φ=ζ(2)3

Question Number 165215    Answers: 1   Comments: 0

Find: Σ_(n=1) ^∞ tan^(−1) ((1/n^2 ))

Find:n=1tan1(1n2)

Question Number 165210    Answers: 0   Comments: 1

Σ_(n=4) ^∞ 2 × ((3/4))^(n+3)

n=42×(34)n+3

Question Number 165209    Answers: 0   Comments: 0

Find: Σ_(n=1) ^k ((n^2 sin^2 ((nπ)/2))/(n^4 π^4 + n^2 π^2 a + b)) = ?

Find:kn=1n2sin2nπ2n4π4+n2π2a+b=?

Question Number 165208    Answers: 1   Comments: 0

lim_(x→1_(y→2) ) x^2 +y^2 =?

limx1y2x2+y2=?

Question Number 165194    Answers: 2   Comments: 0

∫_0 ^( 2π) ln ( 1+ cos (x)).cos (nx )dx=?

02πln(1+cos(x)).cos(nx)dx=?

Question Number 165183    Answers: 0   Comments: 1

Question Number 165178    Answers: 2   Comments: 0

x∈R ⇒ ∣ log _2 ((x/2))∣^3 +∣log _2 (2x)∣^3 =28

xRlog2(x2)3+log2(2x)3=28

Question Number 165170    Answers: 2   Comments: 3

Question Number 165168    Answers: 1   Comments: 0

Question Number 165164    Answers: 1   Comments: 0

Question Number 165162    Answers: 0   Comments: 0

f(x)=2x^2 +5x. Montrer que f est lipschitzienne sur R.

f(x)=2x2+5x.MontrerquefestlipschitziennesurR.

Question Number 165161    Answers: 0   Comments: 0

f(x)=2x^2 +5x. Montrez que f est uniformement continue sur R.

f(x)=2x2+5x.MontrezquefestuniformementcontinuesurR.

Question Number 165160    Answers: 1   Comments: 0

f(x+f(x))=3f(x) and f(−1)=7 faind f(27)=?

f(x+f(x))=3f(x)andf(1)=7faindf(27)=?

Question Number 165150    Answers: 1   Comments: 1

Question Number 165142    Answers: 0   Comments: 2

Question Number 165136    Answers: 3   Comments: 0

Question Number 165271    Answers: 1   Comments: 0

Let , f : [ 0 , 1 ] → R is a continuous function , prove that : lim_( n→ ∞) ∫_0 ^( 1) (( n f(x))/(1+ n^2 x^( 2) )) dx = (π/2) f (0 ) −−− proof −−− S_( n) = [∫_(0 ) ^( (1/( (√n)))) (( n. f(x))/(1 + n^( 2) x^( 2) )) dx =Ω_( n) ]+[ ∫_(1/( (√n))) ^( 1) ((n.f (x))/(1 + n^( 2) x^( 2) )) dx = Φ_( n) ] Ω_( n) =_(∃ t_( n) ∈ ( 0 , (1/( (√n) )) )) ^(MeanValueTheorem( first)) f (t_( n) )∫_(0 ) ^( (1/( (√n)))) (( n)/(1 + n^( 2) x^( 2) ))dx = f ( t_( n) ) ( tan^( −1) ( (√n) )) lim_( n→∞) (Ω_( n) ) = (π/2) f (lim_( n→∞) ( t_( n) ) ) = (π/2) f (0 ) Φ_( n) = ∫_(1/( (√n))) ^( 1) (( n. f(x) )/(1 + n^( 2) x^( 2) )) dx ⇒_(∃ M >0) ^(f is bounded) ∣ Φ_( n) ∣ ≤ M.∫_(1/( (√n))) ^( 1) (n/(1+ n^( 2) x^( 2) )) dx ⇒ ∣ Φ_( n) ∣ ≤ M . ( tan^( −1) ( n )− tan^( −1) ( (√n) )) lim_( n→ ∞) ∣ Φ_( n) ∣ = 0 ⇒ lim_( n→∞) Φ_( n) =0 ∴ lim_( n→ ∞) ( S_( n) ) = (π/2) f (0 ) ■ m.n

Let,f:[0,1]Risacontinuousfunction,provethat:limn01nf(x)1+n2x2dx=π2f(0)proofSn=[01nn.f(x)1+n2x2dx=Ωn]+[1n1n.f(x)1+n2x2dx=Φn]Ωn=MeanValueTheorem(first)tn(0,1n)f(tn)01nn1+n2x2dx=f(tn)(tan1(n))limn(Ωn)=π2f(limn(tn))=π2f(0)Φn=1n1n.f(x)1+n2x2dxfisboundedM>0ΦnM.1n1n1+n2x2dxΦnM.(tan1(n)tan1(n))limnΦn=0limnΦn=0limn(Sn)=π2f(0)m.n

  Pg 482      Pg 483      Pg 484      Pg 485      Pg 486      Pg 487      Pg 488      Pg 489      Pg 490      Pg 491   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com