Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 513

Question Number 162473    Answers: 1   Comments: 0

Question Number 162471    Answers: 2   Comments: 0

[reposted] find ∫_( 0) ^( (𝛑/2)) sin^8 (x)dx + ∫_( 0) ^( 1) sin^(-1) ((x)^(1/8) ) dx=?

[reposted]findπ20sin8(x)dx+10sin1(x8)dx=?

Question Number 162429    Answers: 0   Comments: 1

put the digits 0,1,2,3,4,5,6,7,8,9,in place of the letters in order to perform the edditon

putthedigits0,1,2,3,4,5,6,7,8,9,inplaceofthelettersinordertoperformtheedditon

Question Number 162424    Answers: 1   Comments: 0

calculate Ω = Σ_(n=1) ^∞ (( (−1)^( n) n)/(3^( n) (2n −1 ))) =? − Inspired from Sir Ghaderi′s post−

calculateΩ=n=1(1)nn3n(2n1)=?InspiredfromSirGhaderispost

Question Number 162533    Answers: 5   Comments: 0

Question Number 162416    Answers: 1   Comments: 1

Prove that: ∫_( 0) ^( (𝛑/4)) ((4 ln (cotx))/(cos(2x + 2022𝛑))) dx = 3𝛇(2)

Provethat:π404ln(cotx)cos(2x+2022π)dx=3ζ(2)

Question Number 162417    Answers: 0   Comments: 4

Prove ∫_( 0) ^( (𝛑/2)) sin^8 (x) + ∫_( 0) ^( 1) sin^(-1) ((x)^(1/8) ) ≥ (π/2)

Proveπ20sin8(x)+10sin1(x8)π2

Question Number 162414    Answers: 1   Comments: 0

Prove the Identity for any (a,n) in Real Number (1 + a)∙a^([n]) = a ∙ a^(2[(n/2)]) + a^(2[((n+1)/2)]) [∗] Greatest Integer Function

ProvetheIdentityforany(a,n)inRealNumber(1+a)a[n]=aa2[n2]+a2[n+12][]GreatestIntegerFunction

Question Number 162411    Answers: 0   Comments: 0

Prove the identity for any ′n′ in Real number [(n/2)] ∙ [((n + 1)/2)] = (1/4)([n]^2 + 2[(n/2)] - [n]) [∗] Greatest Integer Function

ProvetheidentityforanyninRealnumber[n2][n+12]=14([n]2+2[n2][n])[]GreatestIntegerFunction

Question Number 162410    Answers: 1   Comments: 0

∫(dx/((a−cosx)^2 )) a>1

dx(acosx)2a>1

Question Number 162510    Answers: 1   Comments: 0

lim_(x→0) ((7tan x−tan 7x)/(3x)) =?

limx07tanxtan7x3x=?

Question Number 162509    Answers: 0   Comments: 0

find Σ_(n=1) ^∞ (((−1)^n )/(n^3 (2n+1)^4 ))

findn=1(1)nn3(2n+1)4

Question Number 162399    Answers: 1   Comments: 1

Let m & n be two positive numbers greater than 1 . If lim_(p→0) ((e^(cos (p^n )) −e)/p^m ) = (1/2)e then (n/m)=?

Letm&nbetwopositivenumbersgreaterthan1.Iflimp0ecos(pn)epm=12ethennm=?

Question Number 162398    Answers: 1   Comments: 0

lim_(x→0) ((∫_0 ^1 (arctan (t+sin x)−arctan t)dt)/(arctan x))=?

limx001(arctan(t+sinx)arctant)dtarctanx=?

Question Number 162396    Answers: 1   Comments: 1

Question Number 162395    Answers: 0   Comments: 1

Question Number 162390    Answers: 0   Comments: 0

Question Number 162382    Answers: 2   Comments: 0

Question Number 162377    Answers: 1   Comments: 2

prove that ψ′′ ((1/4) )= −2π^( 3) − 56 ζ (3 )

provethatψ(14)=2π356ζ(3)

Question Number 162374    Answers: 0   Comments: 2

Question Number 162371    Answers: 2   Comments: 0

If x ∈R the maximum value of ((3x^2 +9x+17)/(3x^2 +9x+7)) is ...

IfxRthemaximumvalueof3x2+9x+173x2+9x+7is...

Question Number 162368    Answers: 1   Comments: 2

Question Number 162367    Answers: 1   Comments: 0

Let x_1 ,x_2 ,x_3 be the roots of the equation x^3 +3x+5=0 . Then the value of expression (x_1 +(1/x_1 ))(x_2 +(1/x_2 ))(x_3 +(1/x_3 )) is equal to

Letx1,x2,x3betherootsoftheequationx3+3x+5=0.Thenthevalueofexpression(x1+1x1)(x2+1x2)(x3+1x3)isequalto

Question Number 162366    Answers: 1   Comments: 0

Given that the solution set of the quadratic inequality ax^2 +bx+c >0 is (2,3). Then the solution set of the inequality cx^2 +bx+a <0 will be

Giventhatthesolutionsetofthequadraticinequalityax2+bx+c>0is(2,3).Thenthesolutionsetoftheinequalitycx2+bx+a<0willbe

Question Number 162365    Answers: 0   Comments: 0

∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ln^2 (x+y+z)dxdydz=?

101010ln2(x+y+z)dxdydz=?

Question Number 162364    Answers: 2   Comments: 1

lim_(x→0) ((5sin x−sin 3x cos 2x−cos 3x sin 2x)/x^3 ) =?

limx05sinxsin3xcos2xcos3xsin2xx3=?

  Pg 508      Pg 509      Pg 510      Pg 511      Pg 512      Pg 513      Pg 514      Pg 515      Pg 516      Pg 517   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com