Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 530

Question Number 160746    Answers: 1   Comments: 0

Question Number 160744    Answers: 1   Comments: 1

(x^2 +x−12)^3 +(x^2 +3x−18)^2 = 9(x^2 −9)^2 x=?

(x2+x12)3+(x2+3x18)2=9(x29)2x=?

Question Number 160739    Answers: 0   Comments: 3

nature de cette integrale quequ′en soit le reel α ∫_1 ^(+oo) t^α e^(−t) dt

naturedecetteintegralequequensoitlereelα1+ootαetdt

Question Number 160747    Answers: 1   Comments: 1

Question Number 160734    Answers: 0   Comments: 1

# Advanced Calculus # Φ = ∫_0 ^( 1) (((ln^ ( (1/(1− x)) ))/x) )^( 3) dx =^? 3 ( ζ (2 ) + ζ (3 )) −−−− solution−−−− Φ =^(I.B.P) [ (( 1)/(2x^( 2) )) ln^( 3) ( 1−x)]_0 ^1 +(3/2) ∫_0 ^( 1) (( ln^( 2) (1− x ))/(x^( 2) (1 − x ))) dx = (1/2) lim_( ξ →1^(− ) ) ((ln^( 3) ( 1− ξ ))/ξ^( 2) ) +(3/2)[∫_0 ^( 1) (( ln^( 2) ( 1− x ))/x)dx = 2 ζ (3)] + (3/2)[∫_0 ^( 1) (( ln^( 2) ( 1−x))/x^( 2) ) dx = (π^( 2) /3) = 2ζ (2 )] +(3/2)∫_0 ^( 1) (( ln^( 2) (1− x))/(1−x)) dx} =(1/2) lim_( ξ →1^( −) ) {((ln^( 3) ( 1−ξ ))/ξ^( 2) ) −ln^( 3) (1− ξ ) } +(3/2) (2ζ (3 )) +(3/2) ( 2ζ (2 )) = 3( ζ (3 ) + 3ζ (2 ) ) ■ m.n

You can't use 'macro parameter character #' in math modeΦ=01(ln(11x)x)3dx=?3(ζ(2)+ζ(3))solutionΦ=I.B.P[12x2ln3(1x)]01+3201ln2(1x)x2(1x)dx=12limξ1ln3(1ξ)ξ2+32[01ln2(1x)xdx=2ζ(3)]+32[01ln2(1x)x2dx=π23=2ζ(2)]+3201ln2(1x)1xdx}=12limξ1{ln3(1ξ)ξ2ln3(1ξ)}+32(2ζ(3))+32(2ζ(2))=3(ζ(3)+3ζ(2))m.n

Question Number 160733    Answers: 0   Comments: 0

Question Number 160755    Answers: 0   Comments: 0

Question Number 160753    Answers: 1   Comments: 1

Question Number 160752    Answers: 1   Comments: 0

solve (d^2 y/dx^2 )−y=x^2 sin3x

solved2ydx2y=x2sin3x

Question Number 160719    Answers: 1   Comments: 2

Question Number 160807    Answers: 0   Comments: 0

−1≤a_0 ≤b_0 ≤c_0 ≤1 ∀n∈N a_(n+1) =∫_(−1) ^1 min(x,b_n ,c_n )dx b_(n+1) =∫_(−1) ^1 mil(x,a_n ,c_n )dx c_(n+1) =∫_(−1) ^1 max(x,b_n ,a_n )dx mil(a,b,c) est le terme median de (a,b,c) nature de (a_n ),(b_n ),(c_n )

1a0b0c01nNan+1=11min(x,bn,cn)dxbn+1=11mil(x,an,cn)dxcn+1=11max(x,bn,an)dxmil(a,b,c)estletermemediande(a,b,c)naturede(an),(bn),(cn)

Question Number 160806    Answers: 1   Comments: 0

Question Number 160712    Answers: 0   Comments: 0

Solve for real numbers: (((x^2 +3n^2 )/(4n^2 )))^4 = (2/n) y-1 ; (((x^2 +3n^2 )/(4n^2 )))^4 = (2/n) z-1 (((x^2 +3n^2 )/(4n^2 )))^4 = (2/n) x-1 n ∈ (0 ; ∞) fixed

Solveforrealnumbers:(x2+3n24n2)4=2ny1;(x2+3n24n2)4=2nz1(x2+3n24n2)4=2nx1n(0;)fixed

Question Number 160711    Answers: 2   Comments: 0

Be p a prime number , arbitrary. Solve on positive integers (x;y;z) { ((xy + z^2 = 3p + 4)),((x + yz^2 = p + 4)) :}

Bepaprimenumber,arbitrary.Solveonpositiveintegers(x;y;z){xy+z2=3p+4x+yz2=p+4

Question Number 160707    Answers: 0   Comments: 0

Question Number 160706    Answers: 4   Comments: 0

Question Number 160701    Answers: 1   Comments: 0

Question Number 160695    Answers: 0   Comments: 0

Question Number 160694    Answers: 1   Comments: 0

Prove that 1 + (1/( (√2))) + (1/( (√3))) + …+ (1/( (√n))) < 2(√n)

Provethat1+12+13++1n<2n

Question Number 160689    Answers: 1   Comments: 0

Question Number 160682    Answers: 0   Comments: 3

Question Number 160677    Answers: 1   Comments: 1

{ ((((x+y)/(xyz)) = −(1/4))),((((y+z)/(xyz)) = −(1/(24)))),((((x+z)/(xyz)) = (1/(24)))) :}

{x+yxyz=14y+zxyz=124x+zxyz=124

Question Number 160672    Answers: 3   Comments: 1

Calculate lim_(x→0) ((tgx^m )/((sin x)^n )), lim_(x→0) ((xcos x−x)/((e^x −1)ln (1+3x^2 )))

Calculatelimx0tgxm(sinx)n,limx0xcosxx(ex1)ln(1+3x2)

Question Number 160671    Answers: 0   Comments: 0

please ∫((lnx)/(x+lnx))dx calculate.

pleaselnxx+lnxdxcalculate.

Question Number 160665    Answers: 0   Comments: 2

In how many ways can you divide 20 students into 5 groups with 4 students in each group such that any two students don′t meet each other in more than one group.

Inhowmanywayscanyoudivide20studentsinto5groupswith4studentsineachgroupsuchthatanytwostudentsdontmeeteachotherinmorethanonegroup.

Question Number 160661    Answers: 0   Comments: 0

  Pg 525      Pg 526      Pg 527      Pg 528      Pg 529      Pg 530      Pg 531      Pg 532      Pg 533      Pg 534   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com