Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 532

Question Number 160618    Answers: 1   Comments: 0

Question Number 160615    Answers: 0   Comments: 1

Question Number 160609    Answers: 4   Comments: 0

lim_(x→π) (((tan x)/(1+cos x)))=?

limxπ(tanx1+cosx)=?

Question Number 160608    Answers: 0   Comments: 6

Question Number 160606    Answers: 0   Comments: 1

Evaluate (d^2 y/dx^2 ) when x=ln 2 and y=2.

Evaluated2ydx2whenx=ln2andy=2.

Question Number 160605    Answers: 0   Comments: 1

Given that y=(3 sin x−4 cos x+6)^2 , 0≤x≤2π. Find the smallest value of y.

Giventhaty=(3sinx4cosx+6)2,0x2π.Findthesmallestvalueofy.

Question Number 160604    Answers: 0   Comments: 0

S_n = ((12)/((4^2 −3^2 )(4^2 −3^2 )))+((12^2 )/((4^2 −3^2 )(4^3 −3^3 )))+((12^3 )/((4^2 −3^2 )(4^4 −3^4 )))+...+((12^n )/((4^2 −3^2 )(4^(n+1) −3^(n+1) ))) lim_(n→∞) S_n = ?

Sn=12(4232)(4232)+122(4232)(4333)+123(4232)(4434)+...+12n(4232)(4n+13n+1)limnSn=?

Question Number 160603    Answers: 1   Comments: 0

(x+(√(x^2 +1)))(y+(√(y^2 +1)))=2021 ∀x,y∈R^+ . min (x+y)=?

(x+x2+1)(y+y2+1)=2021x,yR+.min(x+y)=?

Question Number 160597    Answers: 1   Comments: 0

∫_0 ^( (π/2)) (dx/(2−cos x)) =?

0π2dx2cosx=?

Question Number 160596    Answers: 1   Comments: 0

Question Number 160594    Answers: 1   Comments: 0

∫ (dx/(1−tan^2 (x))) =?

dx1tan2(x)=?

Question Number 160626    Answers: 0   Comments: 1

∫ ((lnz)/(z+lnz)) dz help me sir

lnzz+lnzdzhelpmesir

Question Number 160591    Answers: 0   Comments: 0

Question Number 160590    Answers: 0   Comments: 0

Ω:=∫_0 ^( (1/2)) (( arcsinh(x))/x) dx =^? (π^2 /(20))

Ω:=012arcsinh(x)xdx=?π220

Question Number 160589    Answers: 0   Comments: 0

Question Number 160577    Answers: 1   Comments: 0

Ω=∫_0 ^( 1) tan^( −1) (x).ln(x) = ? −−−−solution−−−− f(a)=∫_0 ^( 1) tan^( −1) ( x) .x^( a) dx = Σ_(n=1) ^∞ (( (−1)^( n−1) )/(2n−1)) ∫_0 ^( 1) x^( 2n+a−1) dx = Σ_(n=0) ^∞ (((−1)^( n−1) )/(2n−1)) ((1/(2n+ a)) ) Ω= f ′ (a )∣_(a=0) = Σ_(n=1) ^∞ (((−1)^n )/((2n−1)( 2n+ a)^( 2) )) Ω= f ′ (0 )=(1/4)Σ(( (−1 )^(n−1) (2n−1−2n ) )/(( 2n−1)n^( 2) )) =(1/4) Σ_(n=1) ^∞ (((−1)^(n−1) )/n^( 2) ) − Σ_(n=1) ^∞ (((−1)^( n−1) )/((2n−1)(2n))) = (π^( 2) /(48)) −{ Σ_(n=1) ^∞ {(((−1)^(n−1) )/(2n−1)) −(((−1)^( n−1) )/(2n))}} ∴ Ω = (π^( 2) /(48)) − (π/4) +(1/2) ln(2)

Ω=01tan1(x).ln(x)=?solutionf(a)=01tan1(x).xadx=n=1(1)n12n101x2n+a1dx=n=0(1)n12n1(12n+a)Ω=f(a)a=0=n=1(1)n(2n1)(2n+a)2Ω=f(0)=14Σ(1)n1(2n12n)(2n1)n2=14n=1(1)n1n2n=1(1)n1(2n1)(2n)=π248{n=1{(1)n12n1(1)n12n}}Ω=π248π4+12ln(2)

Question Number 160576    Answers: 1   Comments: 2

Question Number 160580    Answers: 0   Comments: 0

Calculate 1. lim_(x→+∞) ((x(√(ln (x^2 +1))))/(1+e^(x−3) )) 2. lim_(x→+∞) (((x^3 +5)/(x^2 +2)))^((x+1)/(x^2 +1))

Calculate1.limx+xln(x2+1)1+ex32.limx+(x3+5x2+2)x+1x2+1

Question Number 160569    Answers: 1   Comments: 0

Calculate 1. lim_(x→0) [2e^(x/(x+1)) −1]^((x^2 +1)/x) 2. lim_(x→0) (((1+x×2^x )/(1+x×3^x )))^(1/x^2 )

Calculate1.limx0[2exx+11]x2+1x2.limx0(1+x×2x1+x×3x)1x2

Question Number 160564    Answers: 3   Comments: 2

if the roots of the equation ax^2 +bx+c=0 are in the ratio 3:4,then show that 12b^2 =49ac.

iftherootsoftheequationax2+bx+c=0areintheratio3:4,thenshowthat12b2=49ac.

Question Number 160563    Answers: 1   Comments: 0

∫x{x}[x]dx=?

x{x}[x]dx=?

Question Number 160561    Answers: 0   Comments: 0

Question Number 160560    Answers: 1   Comments: 0

Find: 𝛀 =∫_( 1) ^( ∞) ((ln(x))/(x^4 + x^2 + 1)) dx = ?

Find:Ω=1ln(x)x4+x2+1dx=?

Question Number 160558    Answers: 1   Comments: 0

solve ⌊ x− (√(1−x^( 2) )) ⌋+⌊ x+ (√(1−x^( 2) )) ⌋=0

solvex1x2+x+1x2=0

Question Number 160556    Answers: 0   Comments: 0

∫_0 ^∞ ((arctg(x))/(1+x))∙(dx/( (x)^(1/4) ))=?

0arctg(x)1+xdxx4=?

Question Number 160553    Answers: 0   Comments: 0

  Pg 527      Pg 528      Pg 529      Pg 530      Pg 531      Pg 532      Pg 533      Pg 534      Pg 535      Pg 536   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com