Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 570

Question Number 156905    Answers: 2   Comments: 0

find the value of x and y, x:3:5=8:y:9

findthevalueofxandy,x:3:5=8:y:9

Question Number 156904    Answers: 1   Comments: 0

find the value of x and y , x:3:5=2:y:10

findthevalueofxandy,x:3:5=2:y:10

Question Number 156900    Answers: 0   Comments: 0

Ω_1 = 1 - (π/2) +ÎŁ_(n=2) ^∞ (- (1/𝛑))^n ∙ (1/(n+1)) Ω_2 = 1 - (π/2) + ÎŁ_(n=2) ^∞ (- (1/e))^n ∙ (1/(n+1)) A) Ω_1 < Ω_2 B) Ω_1 = Ω_2 C) Ω_1 > Ω_2

Ω1=1−π2+∑∞n=2(−1π)n⋅1n+1Ω2=1−π2+∑∞n=2(−1e)n⋅1n+1A)Ω1<Ω2B)Ω1=Ω2C)Ω1>Ω2

Question Number 156895    Answers: 0   Comments: 0

(dy/dx)−(x/y)+x^3 cos y = 0

dydx−xy+x3cosy=0

Question Number 156915    Answers: 1   Comments: 0

Question Number 156914    Answers: 2   Comments: 0

Question Number 156891    Answers: 1   Comments: 0

Question Number 156887    Answers: 1   Comments: 0

tan 2x tan 3x tan 5x =1

tan2xtan3xtan5x=1

Question Number 156869    Answers: 2   Comments: 0

Question Number 156867    Answers: 1   Comments: 0

Question Number 156864    Answers: 0   Comments: 4

φ := ∫_0 ^( 1) (( ln (1−x^( 2) ))/(1+ x^( 2) )) dx = proof : φ = ∫_0 ^( 1) (( ln(1−x ))/(1+x^( 2) ))dx + (π/8)ln(2) .... I= ∫_0 ^( 1) ((ln ( 1−x ))/(1+x^( 2) ))dx =^(x=tan(t)) ∫_0 ^( (π/4)) ln( cos(t)−sin(t))dt−∫_0 ^( (π/4)) ln(cos(t))dt = ∫_0 ^( (π/4)) ln((√2) )dt +∫_0 ^( (π/4)) ln(sin((π/4) −t))dt−(G/2) +(π/4)ln(2) =((3π)/8) ln(2)−(G/2) −(G/2) −(π/4) ln(2)=(π/8)ln(2)−G φ = (π/4)ln(2) − G ■ m.n

ϕ:=∫01ln(1−x2)1+x2dx=proof:ϕ=∫01ln(1−x)1+x2dx+π8ln(2)....I=∫01ln(1−x)1+x2dx=x=tan(t)∫0π4ln(cos(t)−sin(t))dt−∫0π4ln(cos(t))dt=∫0π4ln(2)dt+∫0π4ln(sin(π4−t))dt−G2+π4ln(2)=3π8ln(2)−G2−G2−π4ln(2)=π8ln(2)−Gϕ=π4ln(2)−Gâ—Œm.n

Question Number 156860    Answers: 1   Comments: 0

∫_0 ^∞ ((x)^(1/n) /(x^3 +x^2 +x+1))dx=?

∫0∞xnx3+x2+x+1dx=?

Question Number 156855    Answers: 1   Comments: 0

(dy/dx) = ((y^3 −xy^2 −x^2 y−5x^3 )/(xy^2 −x^2 y−2x^3 ))

dydx=y3−xy2−x2y−5x3xy2−x2y−2x3

Question Number 156881    Answers: 0   Comments: 0

𝛀 =∫_( 0) ^( 1) ∫_( 0) ^( 1) ((log(1 - x) log(1 - y))/(1 - xy)) dxdy = ?

Ω=∫10∫10log(1−x)log(1−y)1−xydxdy=?

Question Number 156880    Answers: 2   Comments: 0

𝛀 =ÎŁ_(n=0) ^∞ ÎŁ_(k=0) ^n (1/𝛑^n ) ∙ ((π/e))^k = ?

Ω=∑∞n=0∑nk=01πn⋅(πe)k=?

Question Number 156841    Answers: 1   Comments: 0

Question Number 156849    Answers: 0   Comments: 0

∫_0 ^1 ((ln(e+(1/(1−t))))/( (√t)))dt=?

∫01ln(e+11−t)tdt=?

Question Number 156835    Answers: 0   Comments: 0

Question Number 156834    Answers: 1   Comments: 0

Question Number 156828    Answers: 0   Comments: 0

Question Number 156824    Answers: 1   Comments: 0

If x − z = tan^(− 1) (yz) and z = z(x, y), find ((ήz)/(ήx)) , ((ήz)/(ήy))

Ifx−z=tan−1(yz)andz=z(x,y),findήzήx,ήzήy

Question Number 156820    Answers: 1   Comments: 3

∫ (dx/((x^2 −x+1)((√(x^2 +x+1)))))

∫dx(x2−x+1)(x2+x+1)

Question Number 156836    Answers: 0   Comments: 0

Question Number 156809    Answers: 2   Comments: 1

Solve in R x^2 + 4x = (√(40x^2 + 32x - 16))

SolveinRx2+4x=40x2+32x−16

Question Number 156808    Answers: 0   Comments: 1

Find: 𝛀 =∫ ((x^7 - x^5 + x^3 - x)/(1 + x^(10) )) dx ; x∈R

Find:Ω=∫x7−x5+x3−x1+x10dx;x∈R

Question Number 156805    Answers: 0   Comments: 0

  Pg 565      Pg 566      Pg 567      Pg 568      Pg 569      Pg 570      Pg 571      Pg 572      Pg 573      Pg 574   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com