Question and Answers Forum |
AllQuestion and Answers: Page 672 |
![]() |
F = ((Gm_1 m_2 )/r^2 ) Find the value of r with the following equation. |
let α and β roots of z^2 +3z+5=0 simlify U_n = Σ_(k=0) ^n (α^k +β^k ) and V_n =Σ_(k=0) ^n ((1/α^k )+(1/β^k )) |
g(x)=cos(2arcsinx) calculate (dg/dx) and (d^2 g/dx^2 ) 2)find ∫_(−(1/2)) ^(1/2) g(x)dx |
f(x)=sin^5 x calculate f^((5)) ((π/2)) |
calculate ∫_0 ^∞ ((cosx)/((x^2 +1)(x^2 +2)(x^2 +3)))dx |
(5/( (6)^(1/8) + 1)) ∙ (1/( (6)^(1/4) + 1)) ∙ (1/( (√6) + 1)) + 1 = ? |
(1/(2 + log_3 (25))) + (1/(2 + log_5 (9))) = ? |
![]() |
in ΔABC if sin^2 A sin B sin C+ cos Bcos C=1 then the triangle is |
if the sides a,b,c of a triangle ABC are in A.P. and if sin A =(sin B +sin C)cos α sin B =(sin C+sin A)cos β sin C =(sin A +sin B)cos γ then find the value of tan^2 (α/2)+tan^2 (γ/2) |
if the maximum value of 4sin^2 x+3cos^2 x+sin (x/2)+cos (x/2)+3 is a+(√b) then find a+b |
In a triangle ABC, if ((sin A)/(5−x))=((sin B)/(3x−1))=((sin C)/(2x+5)) then find integral solutions x? |
let the line joining through orthocenter and circumcenter of a triangle ABC is parallel to the base BC then find tan B.tan C |
arcsin(x^2 −4) = arcsin(2x + 4) ⇒ x = ? |
((sin^6 𝛂 + cos^6 𝛂 - 1)/(sin^4 𝛂 - sin^2 𝛂)) = ? |
![]() |
![]() |
(dy/dx) = ((2cos^2 x−sin^2 x+y^2 )/(2cos x)) y(0)=−1 & y(1)=sin x |
find the number of values of cot θ where θ∈[(π/(12)) (π/2)] satisfying the equation [tan θ.[cot θ]]=1 ? (where [x] is greatest integer less than or equal to x) |
![]() |
∫sin(x) cos(x) dx = ? |
∫_( 0) ^3 (√((x+2)^2 −8x)) = ? |
Solve for real numbers the following system of equations { ((a(a+1) = b−1)),((a^2 (b+3)+2a = −1)) :} |
![]() |
Pg 667 Pg 668 Pg 669 Pg 670 Pg 671 Pg 672 Pg 673 Pg 674 Pg 675 Pg 676 |