Question and Answers Forum |
AllQuestion and Answers: Page 679 |
The roots of the equation 2x^2 +px+q=0 are 2α+β and α+2β. Find the values of p and q |
soit z∈C montrer que cos(z) et sin (z) ne sont pas bornees que vaut sin^2 (z)+cos^2 (z)=?? |
original length of the iron rod=175.65 % increase=6(1/3)%×175.65 =((19)/3)×(1/(100))×175.65 =((19×175.65)/(3×100))=((3337.35)/(300))=11.1245 new length=original length+increased length =175.65+11.1245 =186.7745cm solution by CASIO..... |
![]() |
![]() |
![]() |
Developpement limite^ ge^ ne^ ralise^ au voisinnage de −∞ de g(x)=((√(1+x^2 ))/(1+x+(√(1+x^2 )))) et de^ duire une asymptote en −∞ ainsi que sa position relative par rapport a la courbe. |
prove (A − B)−C = A −(B ∪ C) |
∫ln(cosx)dx=? |
un espace vectoriel n′as un seul hyper-plan.. quelle est sa dimension.? |
∫_0 ^x ⌊u⌋(⌊u⌋+1)f(u)du=Σ_(n=1) ^(⌊x⌋) n∫_n ^x f(u)du Prove that |
if log_a c+log_c b=2 ; log_b c+log_a c=0 find (1/(log_a b)) + (1/(log_b c)) + (1/(log_c a)) = ? |
Prove that lim_(n→+∞) ∫^( n) _( 0) (t^n /(n!)) e^(−t) dt = (1/2) |
The number (2/(13)) expressed as a decimal is 0.153846153846... The 200th and 300th digits are? |
Developpement limite^ a l′ordre 2 de g(x)=((√(1+x^2 ))/(1+x+(√(1+x^2 )))) |
ϕ(x)=ln(((e^(x+cos(x)) −e)/(x+x^2 ))) montrer que ϕ se prolonge par continuite^ en 0. on note ψ son prolongement, montrer que ψ est de^ rivable en 0.. Ainsi donner une e^ quation de la tangente, position de la courbe par rapport a la tangente, et faire le dessin.. |
∫_0 ^( (π/2)) ((1+cos (2x))/(sin (2x ))). ln((sec (x)))^(1/3) dx=? |
if a;b;c∈R^+ find (((abc))^(1/3) + (1/a) + (1/(2b)) + (1/(4c)))_(min) = ? |
![]() |
∫_0 ^( ∞) ((√( 1+ x^4 )) −x^( 2) )dx=? |
![]() |
There are two circles , C of radius 1 and C_r of radius r which intersect on a plain At each of the two intersecting points on the circumferences of C and C_r ,the tangent to C and that to C_r form an angle 120° outside of C and C_r . Fill in the blanks with the answers to the following questions (1) Express the distance d between the centers of C and C_r in terms of r (2) Calculate the value of r at which d in (1) attains the minimum (3) in case(2) express the area of the intersection of C and C_r in terms of the constant π |
Without L′Hopital rule lim_(x→π/4) (((√2) cos x−1)/(cot x−1)) =? |
∫_0 ^(+∞) ((t^2 +3t+3)/((t+1)^3 )) e^(−t) cos(t) dt |
How many digits will there be in 875^(16) ? |
Evaluate:: ∫_0 ^1 ln(1+x^2 )∙arctan(x)dx=? |
Pg 674 Pg 675 Pg 676 Pg 677 Pg 678 Pg 679 Pg 680 Pg 681 Pg 682 Pg 683 |