Question and Answers Forum |
AllQuestion and Answers: Page 731 |
∫_(−∞) ^∞ ((x^2 +4)/(x^4 +16)) dx =? |
Solve for x : 2cot^2 x + csc^2 x−2 = 0 |
![]() |
Σ_(k=0) ^n cos^3 k=? |
Σ_(k=1) ^n 5^(1/k) (1−5^(−(1/(k(k+1)))) )=? |
![]() |
![]() |
![]() |
Using vector method, prove that three median of a triangle are concurrent. |
Let m,n be given positive integers. If x & y are positive numbers such that x+y= S , S is a constant, find the value of x and y that maximize Q=x^m y^n . |
......advanced calculus...... prove that: 𝛗:=∫_0 ^( ∞) (x^2 /(cosh^2 (x^2 )))dx=^? (((√2) −2)/4) (√π) ζ ( (1/2) ) .............. |
Given an Elipsis in (O;i^→ ;j^→ ) (E): (x^2 /(1/4))+(y^2 /1)=1. We admit that it image by the transformation f : { ((x′=(√2)(x+y))),((y′=(√2)(−x+y) )) :} is an elipsis (E′): 5x^2 +5y^2 +6xy−8=0 Can you help me to write the reduced equation of (E′) in (O;i^→ ;j^→ ). I mean in the similar form of (E)′s equation. |
![]() |
![]() |
![]() |
Differential system { ((x′+x−y−z=ae^(2t) )),((y′+y−z−x=be^(2t) )),((z′+z−x−y=ce^(2t) )) :} a,b,c are constants help me |
Vector let L_1 = AC where A=(2,−1,3) and C=(1,0,−5)and let L_2 = BD where B=(1,3,0) and D=(3,−4,1). Determine the distance between L_1 and L_2 . |
![]() |
If equation 2log (x+3)=log ax has only one solution. find the value of a. |
![]() |
∫_0 ^π cos^n (x)∙cos (nx)dx=(π/2^n ) |
![]() |
((z^(999) −1)/((z^2 +1)∙(z^2 +z+1))) find the sum of the coefficientes of the polynomial obtained bh dividing the expression by the polynomial... |
∫ (x^3 /(1+x^2 )) dx=? |
...... calculus .... (II)..... find convergence of :: 𝛗:= Σ_(n=2) ^∞ (1/(n(ln^3 (n)+ln(n)))) |
Pg 726 Pg 727 Pg 728 Pg 729 Pg 730 Pg 731 Pg 732 Pg 733 Pg 734 Pg 735 |