Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 733

Question Number 140603    Answers: 1   Comments: 1

Question Number 140534    Answers: 1   Comments: 0

Question Number 140533    Answers: 1   Comments: 0

A triangle is inscribed in a circle. the vertices of the triangle divided the circumference of the circle into three area of length 6,8,10 units then the area of triangle is equal to... (a) ((64(√3)((√3)+1))/π^2 ) (c) ((36(√3)((√3)−1))/π^2 ) (b) ((72(√3)((√3)+1))/π^2 ) (d) ((36(√3)((√3)+1))/π^2 )

Atriangleisinscribedinacircle.theverticesofthetriangledividedthecircumferenceofthecircleintothreeareaoflength6,8,10unitsthentheareaoftriangleisequalto...(a)643(3+1)π2(c)363(31)π2(b)723(3+1)π2(d)363(3+1)π2

Question Number 140531    Answers: 1   Comments: 0

Prove that ∫^( x) _0 (t/(e^t −1)) dt = Σ_(n=1) ^(+∞) (((1−e^(−x) )^n )/n^2 )

Provethat0xtet1dt=+n=1(1ex)nn2

Question Number 140530    Answers: 1   Comments: 0

lim_(x→0) (((x+y)sec (x+y)−ysec y)/x)=?

limx0(x+y)sec(x+y)ysecyx=?

Question Number 140529    Answers: 1   Comments: 0

Question Number 140525    Answers: 2   Comments: 0

x;y;z>0 ; x+y+z=3 proof (x^3 +2)(y^3 +2)(z^3 +2)≥3^3

x;y;z>0;x+y+z=3proof(x3+2)(y3+2)(z3+2)33

Question Number 140652    Answers: 1   Comments: 0

Question Number 140519    Answers: 0   Comments: 0

Question Number 140513    Answers: 0   Comments: 0

n ∈ N^∗ and k ∈ N^∗ . Given 0≤k≤n−1. Show that (1/n)ln(1+(k/n))≤∫_(1+(k/n)) ^(1+((k+1)/n)) lnx dn≤(1/n)ln(1+((k+1)/n))

nNandkN.Given0kn1.Showthat1nln(1+kn)1+k+1n1+knlnxdn1nln(1+k+1n)

Question Number 140506    Answers: 2   Comments: 0

e^((((ζ(2))/2)−((ζ(3))/3)+((ζ(4))/4)−((ζ(5))/5)+...)) =?

e(ζ(2)2ζ(3)3+ζ(4)4ζ(5)5+...)=?

Question Number 140503    Answers: 0   Comments: 3

Prove it (√(a+(√b)))=(√(((a+(√(a^2 +b)))/2)+))(√((a−(√(a^2 −b)))/2))

Proveita+b=a+a2+b2+aa2b2

Question Number 140502    Answers: 0   Comments: 0

If three vector a^→ , b^→ and c^→ are such that a^→ ≠ 0 and a^→ ×b^→ = 2(a^→ ×c^→ ) ,∣a^→ ∣ = ∣c^→ ∣ = 1 , ∣b^→ ∣ = 4 and the angle between b^→ and c^→ is cos^(−1) ((1/4)), then b^→ −2c^→ = λ a^→ , where λ =?

Ifthreevectora,bandcaresuchthata0anda×b=2(a×c),a=c=1,b=4andtheanglebetweenbandciscos1(14),thenb2c=λa,whereλ=?

Question Number 140500    Answers: 0   Comments: 0

tan^2 1°+tan^2 2°+tan^2 3°+...+tan^2 89°=((15931)/3) ???

tan21°+tan22°+tan23°+...+tan289°=159313???

Question Number 140498    Answers: 2   Comments: 0

........ nice ....... calculus....... simplify: 𝛗(x):= sin((x/2))(1+2Σ_(m=1) ^n cos(mx))

........nice.......calculus.......simplify:ϕ(x):=sin(x2)(1+2nm=1cos(mx))

Question Number 140497    Answers: 1   Comments: 7

sin^(−1) (sin x)=x sin^(−1) (cos x)=? sin^(−1) (tan x)=?

sin1(sinx)=xsin1(cosx)=?sin1(tanx)=?

Question Number 140471    Answers: 2   Comments: 0

If lim_(x→0) (cos x + a sin bx)^(1/x) = e^2 { ((a=?)),((b=?)) :}

Iflimx0(cosx+asinbx)1x=e2{a=?b=?

Question Number 140470    Answers: 2   Comments: 0

(f(x))^2 . f(((1−x)/(1+x))) = 64x , ∀x∈D ⇒ f(x) =?

(f(x))2.f(1x1+x)=64x,xDf(x)=?

Question Number 140468    Answers: 0   Comments: 1

a;b;c∈R ; ∀∣x∣≤1 ∣ax^4 +bx^2 +c∣(√(1−x^2 ))≤1 ; proof ∣a∣≤16

a;b;cR;x∣⩽1ax4+bx2+c1x21;proofa∣⩽16

Question Number 140467    Answers: 0   Comments: 0

Question Number 140465    Answers: 0   Comments: 0

Question Number 140462    Answers: 0   Comments: 1

Question Number 140459    Answers: 0   Comments: 0

Find all 2×2 matrices A with A^3 −3A^2 = (((−2 −2)),((−2 −2)) ) .

Findall2×2matricesAwithA33A2=(2222).

Question Number 140490    Answers: 1   Comments: 1

Question Number 140488    Answers: 0   Comments: 2

Question Number 140487    Answers: 0   Comments: 0

∫_0 ^∞ ((1/( (√(1+x))))−(1/( (√(1+x^2 )))))(dx/x)=log(2)

0(11+x11+x2)dxx=log(2)

  Pg 728      Pg 729      Pg 730      Pg 731      Pg 732      Pg 733      Pg 734      Pg 735      Pg 736      Pg 737   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com