Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 736

Question Number 139502    Answers: 1   Comments: 0

(√(x^2 +8x)) ≤ 24−(x+2)(x+6)

x2+8x24(x+2)(x+6)

Question Number 139501    Answers: 1   Comments: 0

Question Number 139489    Answers: 0   Comments: 0

^• I am uncomcofortable and so is my writer. ^• My writer sometimes regrets after writing me and wants to delete me. WHO AM I ? ^■ I am an answer of some question of this forum WITHOUT ANY FEEDBACK OF THE QUESTIONER !

Iamuncomcofortableandsoismywriter.Mywritersometimesregretsafterwritingmeandwantstodeleteme.WHOAMI?IamananswerofsomequestionofthisforumWITHOUTANYFEEDBACKOFTHEQUESTIONER!

Question Number 139484    Answers: 1   Comments: 0

If α,β and γ are the interior angles of a triangle, find the value of determinant (((tan α),1,1),(1,(tan β),1),(1,1,(tan γ)))

Ifα,βandγaretheinterioranglesofatriangle,findthevalueof|tanα111tanβ111tanγ|

Question Number 139483    Answers: 1   Comments: 0

Γ(z^− )=Γ(z)^(−) why?

Γ(z)=Γ(z)why?

Question Number 139481    Answers: 0   Comments: 0

1+(π^6 /(27.6!))+(π^(12) /(27^2 .12!))+(π^(18) /(27^3 .18!))+...=((e^(π/( (√a))) +e^(−(π/( (√a)))) )/(2a)) Find a

1+π627.6!+π12272.12!+π18273.18!+...=eπa+eπa2aFinda

Question Number 139479    Answers: 1   Comments: 0

....advanced ....★★★.....calculus..... :=Σ_(n=1) ^∞ (((sin(n))/n))^3 =?

....advanced.........calculus.....:=n=1(sin(n)n)3=?

Question Number 139478    Answers: 0   Comments: 0

......... nice ... ... ... calculus........ Φ:=∫_0 ^( 1) ((ln(((1+x)/2)))/(x^2 −1))dx=(π^2 /(24)) NOTE :: li_2 (z)+li_2 (1−z)=(π^2 /6)−ln(z)ln(1−z) Hence :: li_2 ((1/2))=(π^2 /(12))−(1/2)ln^2 (2) Φ:=^(⟨ ((1+x)/2)=y ⟩) 2∫_(1/2) ^( 1) ((ln(y))/(4y^2 −4y))dy :=(1/2)∫_(1/2) ^( 1) ((ln(y))/(y(y−1)))dy=(1/2) ∫_(1/2) ^( 1) {((ln(y))/(y−1))−((ln(y))/y)}dy :=−(1/2) [(1/2) ln^2 (y)]_((1 )/2) ^1 +(1/2){li_2 (1)−li_2 ((1/2))} :=(1/4)ln^2 (2)+(π^2 /(12))+(1/2)(−(π^2 /(12))−(1/2)ln^2 (2)) Φ:=(π^2 /(24))

.........nice.........calculus........Φ:=01ln(1+x2)x21dx=π224NOTE::li2(z)+li2(1z)=π26ln(z)ln(1z)Hence::li2(12)=π21212ln2(2)Φ:=1+x2=y2121ln(y)4y24ydy:=12121ln(y)y(y1)dy=12121{ln(y)y1ln(y)y}dy:=12[12ln2(y)]121+12{li2(1)li2(12)}:=14ln2(2)+π212+12(π21212ln2(2))Φ:=π224

Question Number 139476    Answers: 1   Comments: 0

Question Number 139474    Answers: 1   Comments: 0

let: Ω_n =∫_( 0) ^( 2π) cos(x)∙cos(2x)∙...∙cos(nx) dx for which integers n, 1≤n≤10, is Ω_n ≠0?

let:Ωn=2π0cos(x)cos(2x)...cos(nx)dxforwhichintegersn,1n10,isΩn0?

Question Number 139468    Answers: 1   Comments: 0

prove: (√(3+(√2)−(√(9+4(√2))))) = (√(2−(√2)))

prove:3+29+42=22

Question Number 139457    Answers: 1   Comments: 0

_ prove that :: Σ_(n=0) ^∞ (1/((3n)!)) =(e/3)+(2/(3(√e))) cos(((√3)/2))

provethat::n=01(3n)!=e3+23ecos(32)

Question Number 139456    Answers: 1   Comments: 0

E=log_a (√(c/b^(log_(ab) c) ))+log_b (√(c/a^(log_(ab) c) ))

E=logacblogabc+logbcalogabc

Question Number 139455    Answers: 1   Comments: 0

# calculus# evaluate: 𝛗:=Σ_(k=1) ^∞ (((−1)^(k−1) Γ ((k/2)))/(k Γ(((k+1)/2)))) =?

You can't use 'macro parameter character #' in math modeevaluate:ϕ:=k=1(1)k1Γ(k2)kΓ(k+12)=?

Question Number 139454    Answers: 1   Comments: 0

Question Number 139490    Answers: 2   Comments: 0

If w≠1 is a cube root of unity, x=a+b, y=aw+bw^2 and z=aw^2 +bw, then x^3 +y^3 +z^3 =?

Ifw1isacuberootofunity,x=a+b,y=aw+bw2andz=aw2+bw,thenx3+y3+z3=?

Question Number 139445    Answers: 1   Comments: 0

Question Number 139432    Answers: 2   Comments: 0

Question Number 139429    Answers: 0   Comments: 0

∫ sin^4 (12x) ((cos 6x))^(1/(5 )) dx =?

sin4(12x)cos6x5dx=?

Question Number 139427    Answers: 2   Comments: 0

∫_( (√2)) ^(3(√2)) (√(x^2 −2))dx+∫_0 ^4 (√(x^2 +2))dx =?

322x22dx+40x2+2dx=?

Question Number 139426    Answers: 1   Comments: 0

Question Number 139424    Answers: 0   Comments: 0

Question Number 139422    Answers: 0   Comments: 1

C_n ^( 2) =(1/8)P_(n ) ^( 8) find n

Cn2=18Pn8findn

Question Number 139419    Answers: 0   Comments: 5

ABCD is a rectangle such that AD=2AB and its center is O. H is the top of a pyramid which has ABCD as base. All lateral faces are isosceles triangles. planes (HAB) and (HCD) are ⊥. i have joined a graphic. 1. show that (OH)⊥(ABC). 2. show that OH=((√3)/2)AB

ABCDisarectanglesuchthatAD=2ABanditscenterisO.HisthetopofapyramidwhichhasABCDasbase.Alllateralfacesareisoscelestriangles.planes(HAB)and(HCD)are.ihavejoinedagraphic.1.showthat(OH)(ABC).2.showthatOH=32AB

Question Number 139414    Answers: 1   Comments: 1

∫_( 0) ^( π/2) ((cos^2 x)/(cos(x−π/4))) dx

π/20cos2xcos(xπ/4)dx

Question Number 139409    Answers: 1   Comments: 0

hi ! prove this : cos (π/(10)) + cos ((4π)/(10)) + cos ((6π)/(10)) + cos ((9π)/(10)) = 0. (by the easiest possible way...!)

hi!provethis:cosπ10+cos4π10+cos6π10+cos9π10=0.(bytheeasiestpossibleway...!)

  Pg 731      Pg 732      Pg 733      Pg 734      Pg 735      Pg 736      Pg 737      Pg 738      Pg 739      Pg 740   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com