Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 756

Question Number 138299    Answers: 2   Comments: 0

Question Number 138296    Answers: 3   Comments: 0

∫ (dx/(x^4 (√(x^2 −a^2 )))) =?

dxx4x2a2=?

Question Number 138295    Answers: 1   Comments: 0

hi ! Simplify : for n ∈ N^∗ , S_n = Σ_(k=1) ^n ((3k+8)/(k(k+2)2^k )) .

hi!Simplify:fornN,Sn=nk=13k+8k(k+2)2k.

Question Number 138283    Answers: 0   Comments: 2

......advanced ........... calculus...... prove that:: 𝛗=∫_0 ^( 1) ((ln(1+x^2 ).arctan(x))/x^2 )dx= proof::: 𝛗=_(⟨substitution⟩) ^(x=tan(θ)) ∫_0 ^( (π/4)) ((ln(1+tan^2 (θ)).θ)/(tan^2 (θ)))(1+tan^2 (θ))dθ =^(⟨simplification⟩) ∫_0 ^( (π/4)) ((θ.ln((1/(cos^2 (θ)))))/(sin^2 (θ)))dθ =−2∫_0 ^( (π/4)) ((θ.ln(cos(θ))/(sin^2 (θ)))dθ =^(i.b.p) 2{[(cot(θ).θ.ln(cos(θ))]_0 ^(π/4) −∫_0 ^( (π/4)) (cot(θ).[ln(cos(θ))−θ.tan(θ)]dθ =2.(π/4).ln(((√2)/2))−2∫_0 ^( (π/4)) cot(θ).ln(cos(θ))dθ+2∫_0 ^( (π/4)) θdθ =((−π)/4)ln(2)−Φ+(π^2 /(16)) Φ=∫_0 ^( (π/4)) ((cos(θ))/(sin(θ))).ln(1−sin^2 (θ))dθ =^(sin(θ)=y) ∫_0 ^( ((√2)/2)) ((ln(1−y^2 ))/y)dy=−∫_0 ^( ((√2)/2)) Σ_(n=1) ^∞ (y^(2n−1) /n)dy =−Σ[(y^(2n) /(2n^2 ))]_0 ^( ((√2)/2)) =((−1)/2) li_2 ((1/2)) =((−1)/2){(π^2 /(12))−(1/2)ln^2 (2)}=((−π^2 )/(24))+(1/4)ln^2 (2)... ∴ 𝛗=((−π)/4)ln(2)+(π^2 /(24))+(1/4)ln^2 (2)+(π^2 /(16)) ......... 𝛗 =((5π^2 )/(48))−((12π)/(48))ln(2)+((12)/(48)) ln^2 (2) ..... ........𝛗=(1/(48)){5π^2 −12πln(2)+12ln^2 (2)}

......advanced...........calculus......provethat::ϕ=01ln(1+x2).arctan(x)x2dx=proof:::ϕ=x=tan(θ)substitution0π4ln(1+tan2(θ)).θtan2(θ)(1+tan2(θ))dθ=simplification0π4θ.ln(1cos2(θ))sin2(θ)dθ=20π4θ.ln(cos(θ)sin2(θ)dθ=i.b.p2{[(cot(θ).θ.ln(cos(θ))]0π40π4(cot(θ).[ln(cos(θ))θ.tan(θ)]dθ=2.π4.ln(22)20π4cot(θ).ln(cos(θ))dθ+20π4θdθ=π4ln(2)Φ+π216Φ=0π4cos(θ)sin(θ).ln(1sin2(θ))dθ=sin(θ)=y022ln(1y2)ydy=022n=1y2n1ndy=Σ[y2n2n2]022=12li2(12)=12{π21212ln2(2)}=π224+14ln2(2)...ϕ=π4ln(2)+π224+14ln2(2)+π216.........ϕ=5π24812π48ln(2)+1248ln2(2).............ϕ=148{5π212πln(2)+12ln2(2)}

Question Number 138280    Answers: 0   Comments: 2

x^(x+4) =32 solution method?

xx+4=32solutionmethod?

Question Number 138278    Answers: 1   Comments: 0

Question Number 138277    Answers: 3   Comments: 0

calculate ∫_0 ^∞ ∫_0 ^∞ e^(−x^2 −y^2 ) sin(x^2 +y^2 )dxdy

calculate00ex2y2sin(x2+y2)dxdy

Question Number 138275    Answers: 0   Comments: 0

1)calculate U_n =∫∫_([(1/n),1]^2 ) (2x+3y)(√(x^2 +y^2 ))dxdy 2)find ∫∫_(]0,1]^2 ) (2x+3y)(√(x^2 +y^2 ))dxdy

1)calculateUn=[1n,1]2(2x+3y)x2+y2dxdy2)find]0,1]2(2x+3y)x2+y2dxdy

Question Number 138276    Answers: 0   Comments: 0

1) calculate A_n =∫∫_([0,n[^2 ) ((dxdy)/((2x^2 +3y^2 )^2 )) 2)find lim_(n→+∞) A_n

1)calculateAn=[0,n[2dxdy(2x2+3y2)22)findlimn+An

Question Number 138240    Answers: 3   Comments: 0

(x−1)(dy/dx) +xy = 2xe^(−x)

(x1)dydx+xy=2xex

Question Number 138257    Answers: 1   Comments: 0

hi ! calculate : ∫∫_A (x^2 −y^2 )dxdy with A={(x^2 /a^2 ) + (y^2 /b^2 ) ≤ 1}

hi!calculate:A(x2y2)dxdywithA={x2a2+y2b21}

Question Number 138254    Answers: 0   Comments: 10

Question Number 138250    Answers: 1   Comments: 0

(x^2 −10x+6)^(x−2) >1

(x210x+6)x2>1

Question Number 138249    Answers: 1   Comments: 0

lim_(n→0) ((2^(n+1) +3^(n+2) +4^(n+3) )/(2^n +3^n +4^n ))

limn02n+1+3n+2+4n+32n+3n+4n

Question Number 138248    Answers: 0   Comments: 3

x^(x+4) =32

xx+4=32

Question Number 138236    Answers: 0   Comments: 5

prove that (e^(−2y) /(1+e^(−2y) ))<∣tan(z) − i∣<(e^(−2y) /(1−e^(−2y) )) ,y>0 how can solve this ?

provethate2y1+e2y<∣tan(z)i∣<e2y1e2y,y>0howcansolvethis?

Question Number 138235    Answers: 1   Comments: 0

for p,q∈R satisfying p^4 +q^4 =4pq find the range of p+q when 1) no restriction 2) 0≤p≤1, 0≤q≤1

forp,qRsatisfyingp4+q4=4pqfindtherangeofp+qwhen1)norestriction2)0p1,0q1

Question Number 138231    Answers: 0   Comments: 0

Question Number 138224    Answers: 1   Comments: 1

Question Number 138223    Answers: 2   Comments: 0

.......nice ... ... ... calculus... evaluate ::: 𝚯=Σ_(n=−∞) ^∞ (1/((3n+1)^3 )) =? .........................

.......nice.........calculus...evaluate:::Θ=n=1(3n+1)3=?.........................

Question Number 138219    Answers: 2   Comments: 0

Consider the function y=((x^2 +3x+6)/(3x−1)) 1) Determine the intercept of the function 2) Find the asymptotes if they exist 3) find the turning point and determine the type of turnin point they are. 4) sketch the graph of the function.

Considerthefunctiony=x2+3x+63x11)Determinetheinterceptofthefunction2)Findtheasymptotesiftheyexist3)findtheturningpointanddeterminethetypeofturninpointtheyare.4)sketchthegraphofthefunction.

Question Number 138209    Answers: 2   Comments: 1

I_n =∫_0 ^( 1) x^n (√(x^2 +1))dx find reduction formula

In=01xnx2+1dxfindreductionformula

Question Number 138206    Answers: 1   Comments: 1

Question Number 138205    Answers: 2   Comments: 3

Question Number 138203    Answers: 1   Comments: 0

Three circles each radius 1, touch one another externally and they lie between two parallel line. The minimum possible distance between the lines is _

Threecircleseachradius1,touchoneanotherexternallyandtheyliebetweentwoparallelline.Theminimumpossibledistancebetweenthelinesis_

Question Number 142191    Answers: 1   Comments: 3

  Pg 751      Pg 752      Pg 753      Pg 754      Pg 755      Pg 756      Pg 757      Pg 758      Pg 759      Pg 760   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com