Question and Answers Forum |
AllQuestion and Answers: Page 759 |
![]() |
![]() |
Decompose the function P(x) = ((x^4 +2x^3 +6x^2 +20x+6)/(x^3 +x^2 +x)) in partial fractions. |
......Advanced ... calculus...... π=β«_0 ^( 1) x^2 ln(x)ln(1βx)dx=??? |
β« (((3sin x+2))/((2sin x+3)^2 )) dx =? |
![]() |
Q137026 |
Q137014 |
![]() |
![]() |
If x,y > 0 then prove that 3(β((x^2 +y^2 )/2)) + (β(xy)) β₯ 2(x+y) |
![]() |
β« ((ln(1+x))/x)=? |
Ξ± , Ξ² Ξ΅ (0 , (Ο/2)) tan^2 Ξ± = 1+2tan^2 Ξ² β(β2)cosΞ±βcosΞ²=? |
β« ((cos x)/(1+cos x+sin x)) dx =? |
Some useful approximations of sine function sin((Ο/7))=((96)/(221)) sin((Ο/9))=((128)/(373)) sin((Ο/(11)))=((32)/(113)) ... I am counting more ..thanking you! |
....advanced ....... calculus..... prove that::: π=β«_0 ^( 1) ln(ln((1/x))).(dx/( (β(ln((1/x)))))) =β(βΟ) (Ξ³+ln(4)) |
![]() |
I_n =β«_0 ^(Ο/2) sin^n x dx Write a relation between I_(n+2) and I_n . |
β«_1 ^x e^((1βln^2 t)^(1/n) ) dt=...? n an integer |
......advanced .... calculus.... Ξ¦=Ξ£_(k=1) ^β ((Οβ²(k))/k) =Ξ£_(n=1) ^β (a/n^b ) a , b =?? (adapted from brilliant) ................ Ο(k)=^(??) βΞ³+β«_0 ^( 1) (((1βt^(kβ1) )/(1βt)))dt β΄ Οβ²(k)=β«_0 ^( 1) ((βt^(kβ1) ln(t))/(1βt))dt Ξ£_(k=1) ^β ((Οβ²(k))/k)=β«_0 ^( 1) ((βt^(kβ1) ln(t))/((1βt)k))dt =β«_0 ^( 1) ((ln(t))/(t(1βt)))(β(t^k /k))dt=β«_0 ^( 1) ((ln(t)ln(1βt))/(t(1βt)))dt=π π=β«_0 ^( 1) ((ln(t)ln(1βt))/(t(1βt)))dt=π_1 +π_2 where ... ={β«_0 ^( 1) ((ln(t).ln(1βt))/(1βt))dt=π_1 }+{β«_0 ^( 1) ((ln(1βt).ln(t))/t)dt=π_2 } π_1 =[β(1/2)ln(t)ln^2 (1βt)]_0 ^1 +(1/2)β«_0 ^( 1) ((ln^2 (1βt))/t)dt β΄ π_1 = (1/2)(2ΞΆ(3))=ΞΆ(3)=^(easy) π_2 note : β«_0 ^( 1) ((ln^2 (1βt))/t)dt=2ΞΆ(3) (derived earlier) π=π_1 +π_2 =2ΞΆ(3)=Ξ£_(n=1) ^β (2/n^3 ) .... π½= Ξ£_(n=1) ^β (a/n^b ) ......βa=2 , b=3 |
![]() |
![]() |
![]() |
......nice calculus ...... evaluate :: π=β«_0 ^( 2Ο) (1/(1+cos^4 (x)))dx=??? |
β«_1 ^β ((β(3x^4 +5x^3 +1))/(4x^3 +x^2 +2)) dx = ... |
Pg 754 Pg 755 Pg 756 Pg 757 Pg 758 Pg 759 Pg 760 Pg 761 Pg 762 Pg 763 |