Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 759

Question Number 137269    Answers: 1   Comments: 1

Question Number 137255    Answers: 2   Comments: 0

Question Number 137252    Answers: 1   Comments: 0

Decompose the function P(x) = ((x^4 +2x^3 +6x^2 +20x+6)/(x^3 +x^2 +x)) in partial fractions.

DecomposethefunctionP(x)=x4+2x3+6x2+20x+6x3+x2+xinpartialfractions.

Question Number 137251    Answers: 2   Comments: 0

......Advanced ... calculus...... 𝛗=∫_0 ^( 1) x^2 ln(x)ln(1βˆ’x)dx=???

......Advanced...calculus......Ο•=∫01x2ln(x)ln(1βˆ’x)dx=???

Question Number 137249    Answers: 5   Comments: 0

∫ (((3sin x+2))/((2sin x+3)^2 )) dx =?

∫(3sinx+2)(2sinx+3)2dx=?

Question Number 137226    Answers: 1   Comments: 0

Question Number 137225    Answers: 0   Comments: 0

Q137026

Q137026

Question Number 137217    Answers: 0   Comments: 0

Q137014

Q137014

Question Number 137210    Answers: 1   Comments: 0

Question Number 137209    Answers: 1   Comments: 0

Question Number 137208    Answers: 0   Comments: 0

If x,y > 0 then prove that 3(√((x^2 +y^2 )/2)) + (√(xy)) β‰₯ 2(x+y)

Ifx,y>0thenprovethat3x2+y22+xyβ©Ύ2(x+y)

Question Number 137206    Answers: 2   Comments: 0

Question Number 137203    Answers: 2   Comments: 0

∫ ((ln(1+x))/x)=?

∫ln(1+x)x=?

Question Number 137197    Answers: 1   Comments: 0

Ξ± , Ξ² Ξ΅ (0 , (Ο€/2)) tan^2 Ξ± = 1+2tan^2 Ξ² β‡’(√2)cosΞ±βˆ’cosΞ²=?

Ξ±,Ξ²Ο΅(0,Ο€2)tan2Ξ±=1+2tan2Ξ²β‡’2cosΞ±βˆ’cosΞ²=?

Question Number 137192    Answers: 2   Comments: 0

∫ ((cos x)/(1+cos x+sin x)) dx =?

∫cosx1+cosx+sinxdx=?

Question Number 137191    Answers: 0   Comments: 0

Some useful approximations of sine function sin((Ο€/7))=((96)/(221)) sin((Ο€/9))=((128)/(373)) sin((Ο€/(11)))=((32)/(113)) ... I am counting more ..thanking you!

Someusefulapproximationsofsinefunctionsin(Ο€7)=96221sin(Ο€9)=128373sin(Ο€11)=32113...Iamcountingmore..thankingyou!

Question Number 137190    Answers: 1   Comments: 0

....advanced ....... calculus..... prove that::: 𝛗=∫_0 ^( 1) ln(ln((1/x))).(dx/( (√(ln((1/x)))))) =βˆ’(βˆšΟ€) (Ξ³+ln(4))

....advanced.......calculus.....provethat:::Ο•=∫01ln(ln(1x)).dxln(1x)=βˆ’Ο€(Ξ³+ln(4))

Question Number 137189    Answers: 0   Comments: 0

Question Number 137187    Answers: 2   Comments: 0

I_n =∫_0 ^(Ο€/2) sin^n x dx Write a relation between I_(n+2) and I_n .

In=∫0Ο€2sinnxdxWritearelationbetweenIn+2andIn.

Question Number 137185    Answers: 0   Comments: 0

∫_1 ^x e^((1βˆ’ln^2 t)^(1/n) ) dt=...? n an integer

∫1xe(1βˆ’ln2t)1ndt=...?naninteger

Question Number 137177    Answers: 0   Comments: 0

......advanced .... calculus.... Ξ¦=Ξ£_(k=1) ^∞ ((Οˆβ€²(k))/k) =Ξ£_(n=1) ^∞ (a/n^b ) a , b =?? (adapted from brilliant) ................ ψ(k)=^(??) βˆ’Ξ³+∫_0 ^( 1) (((1βˆ’t^(kβˆ’1) )/(1βˆ’t)))dt ∴ Οˆβ€²(k)=∫_0 ^( 1) ((βˆ’t^(kβˆ’1) ln(t))/(1βˆ’t))dt Ξ£_(k=1) ^∞ ((Οˆβ€²(k))/k)=∫_0 ^( 1) ((βˆ’t^(kβˆ’1) ln(t))/((1βˆ’t)k))dt =∫_0 ^( 1) ((ln(t))/(t(1βˆ’t)))(βˆ’(t^k /k))dt=∫_0 ^( 1) ((ln(t)ln(1βˆ’t))/(t(1βˆ’t)))dt=𝛗 𝛗=∫_0 ^( 1) ((ln(t)ln(1βˆ’t))/(t(1βˆ’t)))dt=𝛗_1 +𝛗_2 where ... ={∫_0 ^( 1) ((ln(t).ln(1βˆ’t))/(1βˆ’t))dt=𝛗_1 }+{∫_0 ^( 1) ((ln(1βˆ’t).ln(t))/t)dt=𝛗_2 } 𝛗_1 =[βˆ’(1/2)ln(t)ln^2 (1βˆ’t)]_0 ^1 +(1/2)∫_0 ^( 1) ((ln^2 (1βˆ’t))/t)dt ∴ 𝛗_1 = (1/2)(2ΞΆ(3))=ΞΆ(3)=^(easy) 𝛗_2 note : ∫_0 ^( 1) ((ln^2 (1βˆ’t))/t)dt=2ΞΆ(3) (derived earlier) 𝛗=𝛗_1 +𝛗_2 =2ΞΆ(3)=Ξ£_(n=1) ^∞ (2/n^3 ) .... 𝚽= Ξ£_(n=1) ^∞ (a/n^b ) ......β‡’a=2 , b=3

......advanced....calculus....Ξ¦=βˆ‘βˆžk=1Οˆβ€²(k)k=βˆ‘βˆžn=1anba,b=??(adaptedfrombrilliant)................ψ(k)=??βˆ’Ξ³+∫01(1βˆ’tkβˆ’11βˆ’t)dtβˆ΄Οˆβ€²(k)=∫01βˆ’tkβˆ’1ln(t)1βˆ’tdtβˆ‘βˆžk=1Οˆβ€²(k)k=∫01βˆ’tkβˆ’1ln(t)(1βˆ’t)kdt=∫01ln(t)t(1βˆ’t)(βˆ’tkk)dt=∫01ln(t)ln(1βˆ’t)t(1βˆ’t)dt=ϕϕ=∫01ln(t)ln(1βˆ’t)t(1βˆ’t)dt=Ο•1+Ο•2where...={∫01ln(t).ln(1βˆ’t)1βˆ’tdt=Ο•1}+{∫01ln(1βˆ’t).ln(t)tdt=Ο•2}Ο•1=[βˆ’12ln(t)ln2(1βˆ’t)]01+12∫01ln2(1βˆ’t)tdtβˆ΄Ο•1=12(2ΞΆ(3))=ΞΆ(3)=easyΟ•2note:∫01ln2(1βˆ’t)tdt=2ΞΆ(3)(derivedearlier)Ο•=Ο•1+Ο•2=2ΞΆ(3)=βˆ‘βˆžn=12n3....Ξ¦=βˆ‘βˆžn=1anb......β‡’a=2,b=3

Question Number 137173    Answers: 1   Comments: 1

Question Number 137171    Answers: 1   Comments: 0

Question Number 137157    Answers: 0   Comments: 6

Question Number 137155    Answers: 2   Comments: 0

......nice calculus ...... evaluate :: 𝛗=∫_0 ^( 2Ο€) (1/(1+cos^4 (x)))dx=???

......nicecalculus......evaluate::Ο•=∫02Ο€11+cos4(x)dx=???

Question Number 137156    Answers: 0   Comments: 0

∫_1 ^∞ ((√(3x^4 +5x^3 +1))/(4x^3 +x^2 +2)) dx = ...

∫∞13x4+5x3+14x3+x2+2dx=...

  Pg 754      Pg 755      Pg 756      Pg 757      Pg 758      Pg 759      Pg 760      Pg 761      Pg 762      Pg 763   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com