Question and Answers Forum

All Questions   Topic List

AllQuestion and Answers: Page 762

Question Number 137635    Answers: 0   Comments: 1

Question Number 137634    Answers: 1   Comments: 0

x=2^(p ) and y=2^(q ) . Evaluate in terms of x and/ or y (i)2^(p+q) (ii) 2^(2q ) (iii) 2^(p−1)

x=2pandy=2q.Evaluateintermsofxand/ory(i)2p+q(ii)22q(iii)2p1

Question Number 137627    Answers: 1   Comments: 0

Question Number 137626    Answers: 0   Comments: 0

Question Number 137625    Answers: 0   Comments: 0

Question Number 137624    Answers: 0   Comments: 0

(dy/dx) = ((6xy+y^2 )/(x+y))

dydx=6xy+y2x+y

Question Number 137618    Answers: 1   Comments: 2

Question Number 137615    Answers: 0   Comments: 1

∫_0 ^( (π/2)) ln(((1+tanx)/(1−tanx)))^(xcos(8x)) dx

0π2ln(1+tanx1tanx)xcos(8x)dx

Question Number 137613    Answers: 1   Comments: 0

Two particles of mass m and 4m are connected by a light inelastic string of length 3a, which passes through a small smooth fixed ring. The heavier particle hangs at rest at a distance 2a beneath the ring, while the lighter particle describes a horizontal circle with constant speed. Find (a) The distance of the plane of the circle below the ring. (b) The angular speed of the lighter particle.

Twoparticlesofmassmand4mareconnectedbyalightinelasticstringoflength3a,whichpassesthroughasmallsmoothfixedring.Theheavierparticlehangsatrestatadistance2abeneaththering,whilethelighterparticledescribesahorizontalcirclewithconstantspeed.Find(a)Thedistanceoftheplaneofthecirclebelowthering.(b)Theangularspeedofthelighterparticle.

Question Number 137611    Answers: 1   Comments: 0

Question Number 137610    Answers: 0   Comments: 0

........ mathematical analysis (II).... prove that :: 𝛀=∫_0 ^( 1) (1/(1+x))ln(((x^2 +2x+1)/(1+x+x^2 )))=Σ_(n=1) ^∞ (1/(n^2 (((2n)),(( n)) )))=(π^2 /(18))..

........mathematicalanalysis(II)....provethat::Ω=0111+xln(x2+2x+11+x+x2)=n=11n2(2nn)=π218..

Question Number 137605    Answers: 0   Comments: 0

.....nice calculus... prove that:: Σ_(n=0) ^∞ tan^(−1) ((1/F_n )).tan^(−1) ((1/F_(n+1) ))=(π^2 /4) F_n is fibonacci sequence....

.....nicecalculus...provethat::n=0tan1(1Fn).tan1(1Fn+1)=π24Fnisfibonaccisequence....

Question Number 137598    Answers: 0   Comments: 0

Question Number 137597    Answers: 2   Comments: 0

Find the minimum value of x^(2) +y^(2) +z^(2) , subject to the condition 2x+3y+5z=30?

Find the minimum value of x^(2) +y^(2) +z^(2) , subject to the condition 2x+3y+5z=30?

Question Number 137594    Answers: 1   Comments: 0

(x+(√(x^2 +1)))(y+(√(y^4 +4)))=9 x(√(y^4 +4))+y(√(x^2 +1))=?

(x+x2+1)(y+y4+4)=9xy4+4+yx2+1=?

Question Number 137592    Answers: 3   Comments: 0

......advanced.....calculus.... 𝛀=Σ_(n=1) ^∞ ((ψ′′(n))/n)=??? I havefound :: Ω=−(π^4 /(36)) ... !

......advanced.....calculus....Ω=n=1ψ(n)n=???Ihavefound::Ω=π436...!

Question Number 137591    Answers: 0   Comments: 1

a=(4)^(1/3) +(2)^(1/3) +(1)^(1/3) (3/a)+(3/a^2 )+(1/a^3 )=?

a=43+23+133a+3a2+1a3=?

Question Number 137590    Answers: 0   Comments: 1

x=1+((π+(π+1)^2 +(π+2)^3 +(π+3)^4 )/(4+5^2 +6^3 +7^4 )) (√(x+2(√(x−1))))+(√(x−2(√(x−1))))=?

x=1+π+(π+1)2+(π+2)3+(π+3)44+52+63+74x+2x1+x2x1=?

Question Number 137588    Answers: 1   Comments: 0

For a positive number n , let f(n) be the value of f(n)=((4n+(√(4n^2 −1)))/( (√(2n+1)) +(√(2n−1)))) calculate f(1)+f(2)+f(3)+...+f(40).

Forapositivenumbern,letf(n)bethevalueoff(n)=4n+4n212n+1+2n1calculatef(1)+f(2)+f(3)+...+f(40).

Question Number 137585    Answers: 2   Comments: 0

Find the cube of the number N= (√(7(√(3(√(7(√(3(√(7(√(3(√(7(√(3...))))))))))))))))

FindthecubeofthenumberN=73737373...

Question Number 137584    Answers: 1   Comments: 0

Given { ((a_(2n) = a_n .a_2 +1)),((a_(2n+1) = a_n .a_2 −2 )) :} and { ((a_7 = 2)),((0<a_1 <1)) :}. Find a_(25) =?

Given{a2n=an.a2+1a2n+1=an.a22and{a7=20<a1<1.Finda25=?

Question Number 137582    Answers: 1   Comments: 0

A=(((1/3)((2)^(1/3) −1)((2)^(1/3) +1)^3 ))^(1/3)

A=13(231)(23+1)33

Question Number 137579    Answers: 1   Comments: 0

(−1)×(1/(π.i)) =?

(1)×1π.i=?

Question Number 137575    Answers: 0   Comments: 0

Question Number 137574    Answers: 0   Comments: 0

Question Number 137568    Answers: 0   Comments: 2

  Pg 757      Pg 758      Pg 759      Pg 760      Pg 761      Pg 762      Pg 763      Pg 764      Pg 765      Pg 766   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com