Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 108766 by bemath last updated on 19/Aug/20

   ((BeMath)/★)  (1) find the equation of the tangent line to  the graph of the equation sin^(−1) (x)+cos^(−1) (y)=(π/2)  at given point (((√2)/2), ((√2)/2))  (2)If f(x)= lim_(t→x)  ((sec t−sec x)/(t−x)) , find the value of   f ′((π/4))  (3) lim_(x→1)  ((tan^(−1) (x)−(π/4))/(x−1))

BeMath(1)findtheequationofthetangentlinetothegraphoftheequationsin1(x)+cos1(y)=π2atgivenpoint(22,22)(2)Iff(x)=limtxsectsecxtx,findthevalueoff(π4)(3)limx1tan1(x)π4x1

Answered by Dwaipayan Shikari last updated on 19/Aug/20

3)lim_(x→1) ((tan^(−1) ((x−1)/(1+x)))/(x−1))=((x−1)/(x−1)).(1/(1+x))=(1/2)

3)limx1tan1x11+xx1=x1x1.11+x=12

Answered by john santu last updated on 19/Aug/20

    ((⊸JS⊸)/♥)  (1) (d/dx) [ sin^(−1) (x)+cos^(−1) (y) ] = 0  ⇒(1/( (√(1−x^2 )))) −(1/( (√(1−y^2 )))) y′(x) = 0  gradient ⇒y′(((√2)/2)) = ((√(1−(1/2)))/( (√(1−(1/2))))) = 1  ∴ the equation of tangent line    y = 1.(x−((√2)/2))+((√2)/2) ; y = x   (2)f(x) = lim_(t→x)  ((sec t−sec x)/(t−x))  ⇒f(x) = lim_(t→x)  ((cos x−cos t)/(cos t.cos x (t−x)))  ⇒f(x) = lim_(t→x)  (1/(cos t.cos x)) . lim_(t→x)  ((−2sin (((x+t)/2))sin (((x−t)/2)))/(t−x))  ⇒f(x) = ((sin x)/(cos^2 x)) →f ′(x) = ((cos^3 x+2sin^2 x cos x)/(cos^4 x))  ⇒f ′(x) = ((cos^2 x+2sin^2 x)/(cos^3 x))  therefore f ′((π/4)) = (((1/2)+2.(1/2))/(1/(2(√2)))) = (3/2). 2(√2) = 3(√2)   (3) lim_(x→1)  ((tan^(−1) (x)−(π/4))/(x−1)) = lim_(x→1)  [ (1/(1+x^2 )) ] =(1/2)

JS(1)ddx[sin1(x)+cos1(y)]=011x211y2y(x)=0gradienty(22)=112112=1theequationoftangentliney=1.(x22)+22;y=x(2)f(x)=limtxsectsecxtxf(x)=limtxcosxcostcost.cosx(tx)f(x)=limtx1cost.cosx.limtx2sin(x+t2)sin(xt2)txf(x)=sinxcos2xf(x)=cos3x+2sin2xcosxcos4xf(x)=cos2x+2sin2xcos3xthereforef(π4)=12+2.12122=32.22=32(3)limx1tan1(x)π4x1=limx1[11+x2]=12

Commented by bemath last updated on 19/Aug/20

nice...

nice...

Answered by mathmax by abdo last updated on 19/Aug/20

1)arcsinx +arcosy =(π/2) ⇒arcosy =(π/2) −arcsnx ⇒  y(x) =cos((π/2)−arcsinx) =sin(arcsinx) =x ⇒y^′ (x)=1 ⇒  y =y^′ (((√2)/2))(x−((√2)/2)) +y(((√2)/2)) =x−((√2)/2) +((√2)/2) =x ⇒y=x is the  equation of tangente

1)arcsinx+arcosy=π2arcosy=π2arcsnxy(x)=cos(π2arcsinx)=sin(arcsinx)=xy(x)=1y=y(22)(x22)+y(22)=x22+22=xy=xistheequationoftangente

Answered by mathmax by abdo last updated on 19/Aug/20

2) f(x) =lim_(t→x) (((1/(sint))−(1/(sinx)))/(t−x)) ⇒f(x) =(d/dx)((1/(sinx))) =−((cosx)/(sin^2 x)) ⇒  f^′ (x) =−((−sinxsin^2 x−2sinx cosx cosx)/(sin^4 x))  =((sin^2 x+2cos^2 x)/(sin^3 x)) =((1+cos^2 x)/(sin^3 x)) ⇒f^′ ((π/4)) =((1+((1/(√2)))^2 )/(((1/(√2)))^3 )) =(3/(2((1/(2(√2)))))) =3(√2)

2)f(x)=limtx1sint1sinxtxf(x)=ddx(1sinx)=cosxsin2xf(x)=sinxsin2x2sinxcosxcosxsin4x=sin2x+2cos2xsin3x=1+cos2xsin3xf(π4)=1+(12)2(12)3=32(122)=32

Answered by mathmax by abdo last updated on 19/Aug/20

3) lim_(x→1)  ((arctanx −(π/4))/(x−1)) =lim_(x→1) ((arctan(x)−arctan(1))/(x−1))  =arctan^′ (1) =(1/2)

3)limx1arctanxπ4x1=limx1arctan(x)arctan(1)x1=arctan(1)=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com