Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 11900 by @ANTARES_VY last updated on 04/Apr/17

Calculate.  cos(𝛑/7)Γ—cos((4𝛑)/7)Γ—cos((5𝛑)/7).

Calculate.cosΟ€7Γ—cos4Ο€7Γ—cos5Ο€7.

Answered by ajfour last updated on 04/Apr/17

= cos (Ο€/7)cos ((4Ο€)/7)[βˆ’cos (Ο€βˆ’((5Ο€)/7)) ]  = βˆ’cos (Ο€/7)cos ((4Ο€)/7)cos ((2Ο€)/7)  = ((βˆ’1)/(2sin (Ο€/7)))[ 2sin (Ο€/7)cos (Ο€/7)][cos ((2Ο€)/7)cos ((4Ο€)/7) ]  =βˆ’(1/(2sin (Ο€/7)))[sin ((2Ο€)/7)cos ((2Ο€)/7)]cos ((4Ο€)/7)  = βˆ’(1/(4sin (Ο€/7)))(sin ((4Ο€)/7)cos ((4Ο€)/7))  = βˆ’(((sin ((8Ο€)/7))/(8sin (Ο€/7))))= βˆ’((sin (Ο€+(Ο€/7)))/(8sin (Ο€/7)))  = βˆ’((βˆ’sin (Ο€/7))/(8sin (Ο€/7))) = (1/8) .

=cosΟ€7cos4Ο€7[βˆ’cos(Ο€βˆ’5Ο€7)]=βˆ’cosΟ€7cos4Ο€7cos2Ο€7=βˆ’12sinΟ€7[2sinΟ€7cosΟ€7][cos2Ο€7cos4Ο€7]=βˆ’12sinΟ€7[sin2Ο€7cos2Ο€7]cos4Ο€7=βˆ’14sinΟ€7(sin4Ο€7cos4Ο€7)=βˆ’(sin8Ο€78sinΟ€7)=βˆ’sin(Ο€+Ο€7)8sinΟ€7=βˆ’βˆ’sin(Ο€/7)8sin(Ο€/7)=18.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com