All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 138703 by mathocean1 last updated on 16/Apr/21
Calculate∫0−π6cos2x1−2sinxdx
Commented by SanyamJoshi last updated on 17/Apr/21
Answered by Mathspace last updated on 16/Apr/21
I=∫−π60cos2x1−2sinxdx=x=−t∫0π6cos2t1+2sintdt=∫0π61−sin2t1+2sintdtwehave1−x22x+1=−144x2−42x+1=−14(4x2−12x+1−32x+1)=−14(2x−1)+34(2x+1)⇒I=−14∫0π6(2sint−1)dt+34∫0π6dt2sint+1(=J)=−12[−cost]0π6+14.π6+34J=−12(1−32)+π24+34JJ=∫0π6dt2sint+1=tan(t2)=y∫02−32dy(1+y2)(22y1+y2+1)=2∫02−3dy4y+y2+1=2∫02−3dyy2+4y+1Δ′=22−1=3⇒y1=−2+3y2=−2−3⇒2∫02−3dy(y−y1)(y−y2)=2123∫02−3(1y−y1−1y−y2)dy=13[log∣y+2−3y+2+3∣]02−3=13{log(4−234)−log(2−32+3)}I=−12+34+π24+34{log(1−32)−log(2−32+3)}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com