Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 138703 by mathocean1 last updated on 16/Apr/21

Calculate  ∫_(−(π/6)) ^0 ((cos^2 x)/(1−2sinx))dx

Calculate0π6cos2x12sinxdx

Commented by SanyamJoshi last updated on 17/Apr/21

Calculate  ∫_(−(π/6)) ^0 ((cos^2 x)/(1−2sinx))dx

Calculate0π6cos2x12sinxdx

Answered by Mathspace last updated on 16/Apr/21

I=∫_(−(π/6)) ^0  ((cos^2 x)/(1−2sinx))dx  =_(x=−t) ∫_0 ^(π/6)  ((cos^2 t)/(1+2sint))dt  =∫_0 ^(π/6)  ((1−sin^2 t)/(1+2sint))dt  we have ((1−x^2 )/(2x+1))=−(1/4)((4x^2 −4)/(2x+1))  =−(1/4)(((4x^2 −1)/(2x+1))−(3/(2x+1)))  =−(1/4)(2x−1)+(3/(4(2x+1))) ⇒  I=−(1/4)∫_0 ^(π/6) (2sint−1)dt  +(3/4)∫_0 ^(π/6)  (dt/(2sint +1))(=J)  =−(1/2)[−cost]_0 ^(π/6) +(1/4).(π/6)  +(3/4)J  =−(1/2)(1−((√3)/2))+(π/(24))+(3/4)J  J=∫_0 ^(π/6)  (dt/(2sint +1))  =_(tan((t/2))=y)     ∫_0 ^(2−(√3))    ((2dy)/((1+y^2 )(2((2y)/(1+y^2 ))+1)))  =2∫_0 ^(2−(√3))     (dy/(4y+y^2  +1))  =2∫_0 ^(2−(√3))    (dy/(y^2 +4y+1))  Δ^′ =2^2 −1=3 ⇒y_1 =−2+(√3)  y_2 =−2−(√3) ⇒  2∫_0 ^(2−(√3))  (dy/((y−y_1 )(y−y_2 )))  =2(1/(2(√3)))∫_0 ^(2−(√3))   ((1/(y−y_1 ))−(1/(y−y_2 )))dy  =(1/( (√3)))[log∣((y+2−(√3))/(y+2+(√3)))∣]_0 ^(2−(√3))   =(1/( (√3))){log(((4−2(√3))/4))−log(((2−(√3))/(2+(√3))))}  I=−(1/2)+((√3)/4)+(π/(24))+((√3)/4){log(1−((√3)/2))−log(((2−(√3))/(2+(√3))))}

I=π60cos2x12sinxdx=x=t0π6cos2t1+2sintdt=0π61sin2t1+2sintdtwehave1x22x+1=144x242x+1=14(4x212x+132x+1)=14(2x1)+34(2x+1)I=140π6(2sint1)dt+340π6dt2sint+1(=J)=12[cost]0π6+14.π6+34J=12(132)+π24+34JJ=0π6dt2sint+1=tan(t2)=y0232dy(1+y2)(22y1+y2+1)=2023dy4y+y2+1=2023dyy2+4y+1Δ=221=3y1=2+3y2=232023dy(yy1)(yy2)=2123023(1yy11yy2)dy=13[logy+23y+2+3]023=13{log(4234)log(232+3)}I=12+34+π24+34{log(132)log(232+3)}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com