Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 79913 by Henri Boucatchou last updated on 29/Jan/20

 Convergence  of  I=∫_0 ^( ∞) (e^t /(e^(−t) +e^(2t) ∣sint∣))dt

ConvergenceofI=0etet+e2tsintdt

Commented by mathmax by abdo last updated on 29/Jan/20

I =∫_0 ^∞   (e^(−t) /(e^(−3t)  +∣sint∣))dt =∫_0 ^(+∞)  (e^(−t) /(e^(−3t)  +∣sint∣))dt   we have  ∣sint∣≤1 ⇒e^(−3t)  +∣sint∣≤1+e^(−3t)  ⇒(1/(e^(−3t) +∣sint∣))≥(1/(1+e^(−3t) )) ⇒  ∫_0 ^∞   (e^(−t) /(e^(−3t)  +∣sint∣)) ≥∫_0 ^∞   (e^(−t) /(1+e^(−3t) )) dt  and this integrale diverges   because at +∞  (e^(−t) /(1+e^(−3t) )) ∼e^(2t)

I=0ete3t+sintdt=0+ete3t+sintdtwehavesint∣⩽1e3t+sint∣⩽1+e3t1e3t+sint11+e3t0ete3t+sint0et1+e3tdtandthisintegraledivergesbecauseat+et1+e3te2t

Terms of Service

Privacy Policy

Contact: info@tinkutara.com