Question and Answers Forum

All Questions   Topic List

Coordinate GeometryQuestion and Answers: Page 7

Question Number 181153    Answers: 2   Comments: 0

Question Number 179515    Answers: 1   Comments: 0

Question Number 179458    Answers: 1   Comments: 2

Find the area of the triangle in the first quadrant between the x and y axis and the tangent to the relationship curve y=(5/x)−(x/5) and x dont equal 0 at (0,5)

Findtheareaofthetriangleinthefirstquadrantbetweenthexandyaxisandthetangenttotherelationshipcurvey=5xx5andxdontequal0at(0,5)

Question Number 179360    Answers: 1   Comments: 0

Donnes: AD=1; DB=6; ∡BCD=45° ; ∡BAC=90° Determiner 1) AC ? 2) AE? −−−−−−−−−−−− Solution △BAC ∡BAC=90° BC^2 =AB^2 +AC^2 CD (cote commun aux △BAC et BDC) DB^2 =CD^2 +BC^2 −2BC×CDcos 45° (1) △CAD CD^2 =AD^2 +AC^2 (1) DB^2 =(AD^2 +AC^2 )+(AB^2 +AC^2 )−2(√((AB^2 +AC^2 )(AD^2 +AC^2 ))) cos 45° DB^2 =(AD^2 +AB^2 +2AC^2 −(√(2(AB^2 +AC^2 )(AD^2 +AC^2 ))) 2(AB^2 +AC^2 )(AD^2 +AC^2 )=(AD^2 +AB^2 +2AC^2 −DB^2 )^2 posons: AC=x 2(49+x^2 )(1+x^2 )=(1+49+2x^2 −36)^2 (x^4 +50x^2 +49)=2(x^4 +14x^2 +49) x^4 −22x^2 +49=0 x^2 =11±6(√2) x=(√(11+6(√2) )) AC =4,4142135 2)AB et AC coupent le cercle en (D,B) et( E,C) Nous avons AD×AB=AE×AC AE=((AD×AB)/(AC))=(7/( (√(11+6(√2)))))=((7(√(11+6(√2))))/(11+6(√2))) AE=1,585786

Donnes:AD=1;DB=6;BCD=45°;BAC=90°Determiner1)AC?2)AE?SolutionBACBAC=90°BC2=AB2+AC2CD(cotecommunauxBACetBDC)DB2=CD2+BC22BC×CDcos45°(1)CADCD2=AD2+AC2(1)DB2=(AD2+AC2)+(AB2+AC2)2(AB2+AC2)(AD2+AC2)cos45°DB2=(AD2+AB2+2AC22(AB2+AC2)(AD2+AC2)2(AB2+AC2)(AD2+AC2)=(AD2+AB2+2AC2DB2)2posons:AC=x2(49+x2)(1+x2)=(1+49+2x236)2(x4+50x2+49)=2(x4+14x2+49)x422x2+49=0x2=11±62x=11+62AC=4,41421352)ABetACcoupentlecercleen(D,B)et(E,C)NousavonsAD×AB=AE×ACAE=AD×ABAC=711+62=711+6211+62AE=1,585786

Question Number 178833    Answers: 6   Comments: 0

Question Number 178647    Answers: 1   Comments: 0

Question Number 178131    Answers: 1   Comments: 2

Question Number 177980    Answers: 1   Comments: 0

Question Number 177787    Answers: 1   Comments: 1

Question Number 177628    Answers: 1   Comments: 1

Question Number 177152    Answers: 1   Comments: 0

Question Number 176121    Answers: 0   Comments: 0

Question Number 175901    Answers: 2   Comments: 1

Question Number 175894    Answers: 1   Comments: 0

Question Number 175836    Answers: 2   Comments: 1

Question Number 175608    Answers: 1   Comments: 3

Question Number 175237    Answers: 0   Comments: 0

The equations of the sides AC, BC and AB of a right−angled triangled with lengths a, b and c are y = −7, x=11 and 4x−3y−5=0 respectively. Find the equation of the inscribed circle of the triangle, if its radius r, is given by r = ((a+b−c)/2).

TheequationsofthesidesAC,BCandABofarightangledtriangledwithlengthsa,bandcarey=7,x=11and4x3y5=0respectively.Findtheequationoftheinscribedcircleofthetriangle,ifitsradiusr,isgivenbyr=a+bc2.

Question Number 174816    Answers: 3   Comments: 1

Question Number 174069    Answers: 1   Comments: 1

Question Number 176811    Answers: 0   Comments: 1

Question Number 173352    Answers: 1   Comments: 0

Question Number 181404    Answers: 2   Comments: 5

Dterminer la valeur de x

Dterminerlavaleurdex

Question Number 173033    Answers: 2   Comments: 0

Question Number 173002    Answers: 1   Comments: 1

Question Number 172878    Answers: 1   Comments: 1

Question Number 172392    Answers: 2   Comments: 2

  Pg 2      Pg 3      Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com