Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 67083 by lalitchand last updated on 22/Aug/19

CosA+CosB+CosC=1+4Cos(((B+C)/2)).Cos(((C+A)/2)).Cos(((A+B)/2))=1+4Cos(((Π−A)/4)).Cos(((Π−B)/4)).Cos(((Π−C)/4))  prove that if A+B+C=Π

CosA+CosB+CosC=1+4Cos(B+C2).Cos(C+A2).Cos(A+B2)=1+4Cos(ΠA4).Cos(ΠB4).Cos(ΠC4)provethatifA+B+C=Π

Answered by Tanmay chaudhury last updated on 23/Aug/19

LHS  2cos(((A+B)/2))cos(((A−B)/2))+1−2sin^2 (C/2)  look  cos2α=cos^2 α−sin^2 α                         =1−2sin^2 α   or  2cos^2 α−1  now ((A+B)/2)=((π−C)/2)=(π/2)−(C/2)  so cos(((A+B)/2))=cos((π/2)−(C/2))=sin(C/2)  back to problem  2sin(C/2)cos(((A−B)/2))+1−2sin^2 (C/2)  2sin(C/2){cos(((A−B)/2))−sin((C/2))}+1  2cos(((A+B)/2)){cos(((A−B)/2))−cos(((A+B)/2))}+1  =2cos(((A+B)/2)).2sin((A/2))sin((B/2))+1  =4cos(((A+B)/2))cos(((B+C)/2))cos(((A+C)/2))+1

LHS2cos(A+B2)cos(AB2)+12sin2C2lookcos2α=cos2αsin2α=12sin2αor2cos2α1nowA+B2=πC2=π2C2socos(A+B2)=cos(π2C2)=sinC2backtoproblem2sinC2cos(AB2)+12sin2C22sinC2{cos(AB2)sin(C2)}+12cos(A+B2){cos(AB2)cos(A+B2)}+1=2cos(A+B2).2sin(A2)sin(B2)+1=4cos(A+B2)cos(B+C2)cos(A+C2)+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com