Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 8148 by Rasheed Soomro last updated on 02/Oct/16

Determine x^4 − (1/x^4 ) , if x^2 + (1/x^2 )=34 .

Determinex41x4,ifx2+1x2=34.

Commented by sou1618 last updated on 02/Oct/16

set X=x^2 ≥0  X+(1/X)=34    (X−(1/X))^2 =(X+(1/X))^2 −4=34^2 −2^2 =36×32  ⇒  X−(1/X)=±24(√2)    X^2 −(1/X^2 )=(X+(1/X))(X−(1/X))=34×(±24(√2))  =±816(√2)

setX=x20X+1X=34(X1X)2=(X+1X)24=34222=36×32X1X=±242X21X2=(X+1X)(X1X)=34×(±242)=±8162

Commented by Rasheed Soomro last updated on 02/Oct/16

ThankS!   G •^(⌢)   •_(⌣^ ) ^(⌢) D approach!

ThankS!GDapproach!

Answered by trapti rathaur@ gmail.com last updated on 02/Oct/16

(x^2 +(1/x^2 ))^2 =x^4 +(1/x^4 )+2×x^2 ×(1/(x2))     34×34=x^4 +(1/x^4 )+2       x^4 +(1/x^4 )=1154                                                     using (a+b)^2 =(a−b)^2 +4ab  (x^4 +(1/x^4 ))^2 =(x^4 −(1/x^4 ))^2 +4×x^4 ×(1/x^4 )  (1154)^2 =(x^4 −(1/x^4 ))^2 +4  (x^4 −(1/x^4 ))^2 =(1154)^2 −(2)^2       (x^4 −(1/x^4 ))=(√(1331712))                         =816(√2)             ANSWER−                                          (x^4 −(1/x^4 ))=816(√2)

Missing \left or extra \right34×34=x4+1x4+2x4+1x4=1154Missing \left or extra \rightMissing \left or extra \right(1154)2=(x41x4)2+4(x41x4)2=(1154)2(2)2(x41x4)=1331712=8162ANSWER(x41x4)=8162

Commented by Rasheed Soomro last updated on 02/Oct/16

ThankS!  You lost one answer by taking only +ve  squareroot of 1331712 :      (x^4 −(1/x^4 ))=(√(1331712))  You should have written                     (x^4 −(1/x^4 ))=±(√(1331712))=±816(√2)

ThankS!Youlostoneanswerbytakingonly+vesquarerootof1331712:(x41x4)=1331712Youshouldhavewritten(x41x4)=±1331712=±8162

Commented by trapti rathaur@ gmail.com last updated on 02/Oct/16

thanks.i forget it

thanks.iforgetit

Answered by Rasheed Soomro last updated on 02/Oct/16

x^2 + (1/x^2 )=34  ,  x^4 − (1/x^4 )=?  Approach:  x^2 + (1/x^2 )→ { ((x+ (1/x))),((x− (1/x))) :}    →x^2 − (1/x^2 )∧x^2 + (1/x^2 )→x^4 − (1/x^4 )  x^2 + (1/x^2 )=34  x^2 +2+ (1/x^2 )=34+2   ∧   x^2 −2+ (1/x^2 )=34−2  (x+(1/x))^2 =(±6)^2      ∧   (x−(1/x))^2 =(±4(√2) )^2   x+(1/x)=±6  ∧ x−(1/x)=±4(√2)                                                            ⇒x^2 − (1/x^2 )=±24(√2)   {: ((x^2 − (1/x^2 )=±24(√2))),((              ×                           )),((x^2 + (1/x^2 )=34 (given))) }⇒x^4 −(1/x^4 )=±816(√2)

x2+1x2=34,x41x4=?Approach:x2+1x2{x+1xx1xx21x2x2+1x2x41x4x2+1x2=34x2+2+1x2=34+2x22+1x2=342(x+1x)2=(±6)2(x1x)2=(±42)2x+1x=±6x1x=±42x21x2=±242x21x2=±242×x2+1x2=34(given)}x41x4=±8162

Terms of Service

Privacy Policy

Contact: info@tinkutara.com