All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 9306 by tawakalitu last updated on 29/Nov/16
Differentiatefromthefirstprinciple:y=tan2x
Answered by mrW last updated on 30/Nov/16
y(x)=tan(2x)y(x+h)=tan(2x+2h)=tan(2x)+tan(2h)1−tan(2x)×tan(2h)y(x+h)−y(x)=tan(2x)+tan(2h)1−tan(2x)×tan(2h)−tan(2x)=tan(2x)+tan(2h)−tan(2x)+tan2(2x)×tan(2h)1−tan(2x)×tan(2h)=1+tan2(2x)1tan(2h)−tan(2x)y(x+h)−y(x)h=1+tan2(2x)htan(2h)−tan(2x)×hlimh→0htan(2h)=limh→012×tan(2h)2h=12limh→0tan(2x)×h=0dydx=limh→0y(x+h)−y(x)h=1+tan2(2x)12=2[1+tan2(2x)]=2cos2(2x)
Commented by tawakalitu last updated on 29/Nov/16
Thankssir.Godblessyou.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com