Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 5715 by sanusihammed last updated on 24/May/16

Differentiate   x^x    from the first principle.    please help

Differentiatexxfromthefirstprinciple.pleasehelp

Answered by Yozzii last updated on 25/May/16

Let y=x^x . If x>0 we can write  lny=lnx^x =xlnx. Keep in mind that  y is a function of x. To differentiate  the equation with respect to x, we need to find  (d/dx)(lny)  and  (d/dx)(xlnx).  Let lny=u. Then, by first principles,  (du/dy)=lim_(δy→0) ((δu)/(δy))=lim_(δy→0) ((ln(y+δy)−lny)/(δy))  (du/dy)=lim_(δy→0) ((ln(1+((δy)/y)))/(δy))=lim_(δy→0) ln(1+((δy)/y))^(1/δy)     Let k=δy/y⇒δy=yk  (du/dy)=lim_(k→0) (1+u)^(1/(yk)) =(1/y){lim_(k→0) ln(1+k)^(1/k) }  let k=1/n.  ∴(du/dy)=(1/y){lim_(n→∞) ln(1+(1/n))^n }=(1/y)ln{lim_(n→∞) (1+n^(−1) )^n }=(1/y)lne  ⇒(du/dy)=1/y.......(1)    Now, (du/dx)=(du/dy)×(dy/dx) according to the chain rule.  PROOF: From first principles  (du/dx)=lim_(δx→0) ((δu)/(δx))=lim_(δx→0) (((δu)/(δy))×((δy)/(δx)))=(lim_(δx→0) ((δu)/(δy)))(lim_(δx→0) ((δy)/(δx)))  If y=f(x) such that δy=f(x+δx)−f(x)  ⇒ as δx→0, f(x+δx)−f(x)→0 or δy→0.  ∴ lim_(δx→0) ((δu)/(δy))=lim_(δy→0) ((δu)/(δy))=(du/dy) and lim_(δx→0) ((δy)/(δx))=(dy/dx).  ⇒(du/dx)=(du/dy)×(dy/dx).                                            □    ∴ (du/dx)=((d(lny))/dx)=((d(lny))/dy)×(dy/dx)=(1/y)•(dy/dx).  Now,  ((d(xlnx))/dx)=lim_(δx→0) (((x+δx)ln(x+δx)−xlnx)/(δx))                   =lim_(δx→0) ((xln(x+δx)−xlnx+δxln(x+δx))/(δx))                   =lim_(δx→0) {(x/(δx))ln(1+((δx)/x))+ln(x+δx)}                   =x{lim_(δx→0) (1/(δx))ln(1+((δx)/x))}+ln(x+0)  We just found the result of lim_(δy→0) (1/(δy))ln(1+((δy)/y))=(1/y) from (1).  Hence, similarly lim_(δx→0) (1/(δx))ln(1+((δx)/x))=(1/x).  ⇒((d(xlnx))/dx)=x×(1/x)+lnx=1+lnx (x>0)  ∴(1/y)×(dy/dx)=1+lnx⇒(dy/dx)=y(1+lnx)=x^x (1+lnx)

Lety=xx.Ifx>0wecanwritelny=lnxx=xlnx.Keepinmindthatyisafunctionofx.Todifferentiatetheequationwithrespecttox,weneedtofindddx(lny)andddx(xlnx).Letlny=u.Then,byfirstprinciples,dudy=limδy0δuδy=limδy0ln(y+δy)lnyδydudy=limδy0ln(1+δyy)δy=limδy0ln(1+δyy)1/δyLetk=δy/yδy=ykdudy=limk0(1+u)1/(yk)=1y{limk0ln(1+k)1/k}letk=1/n.dudy=1y{limnln(1+1n)n}=1yln{limn(1+n1)n}=1ylnedudy=1/y.......(1)Now,dudx=dudy×dydxaccordingtothechainrule.PROOF:Fromfirstprinciplesdudx=limδx0δuδx=limδx0(δuδy×δyδx)=(limδx0δuδy)(limδx0δyδx)Ify=f(x)suchthatδy=f(x+δx)f(x)asδx0,f(x+δx)f(x)0orδy0.limδx0δuδy=limδy0δuδy=dudyandlimδx0δyδx=dydx.dudx=dudy×dydx.dudx=d(lny)dx=d(lny)dy×dydx=1ydydx.Now,d(xlnx)dx=limδx0(x+δx)ln(x+δx)xlnxδx=limδx0xln(x+δx)xlnx+δxln(x+δx)δx=limδx0{xδxln(1+δxx)+ln(x+δx)}=x{limδx01δxln(1+δxx)}+ln(x+0)Wejustfoundtheresultoflimδy01δyln(1+δyy)=1yfrom(1).Hence,similarlylimδx01δxln(1+δxx)=1x.d(xlnx)dx=x×1x+lnx=1+lnx(x>0)1y×dydx=1+lnxdydx=y(1+lnx)=xx(1+lnx)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com