Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 11

Question Number 164339    Answers: 1   Comments: 0

In AB^Δ C : cos^( 2) (A )+ cos^( 2) (B )+ cos^( 2) ( C )=1 . Prove that AB^Δ C is right angled. −−−−−−−−

InABCΔ:cos2(A)+cos2(B)+cos2(C)=1.ProvethatABCΔisrightangled.

Question Number 164103    Answers: 1   Comments: 0

prove that Ω=∫_0 ^( 1) ln(((1+x)/(1−x)) ).(dx/(x (√( 1−x^( 2) )))) = (π^( 2) /2) −− m.n−−

provethatΩ=01ln(1+x1x).dxx1x2=π22m.n

Question Number 164059    Answers: 0   Comments: 0

Air leaks from a spherical ballon so that it maintains its shape at a rate of 25 cc/m .What is the rate of change in the length of the radius of the balloon when the radius is 5 cm

Airleaksfromasphericalballonsothatitmaintainsitsshapeatarateof25cc/m.Whatistherateofchangeinthelengthoftheradiusoftheballoonwhentheradiusis5cm

Question Number 163928    Answers: 1   Comments: 0

f(x)=((2x^(100!) )/(100!))+x^(100) +1 find ((d^(100!) f(x))/dx^(100!) )=?

f(x)=2x100!100!+x100+1findd100!f(x)dx100!=?

Question Number 163732    Answers: 0   Comments: 0

If , 𝛗 = ∫_(−∞) ^( +∞) (( sin(x).ln^( 2) (x ))/x) then find : Im (𝛗 ) = ? ■ m.n

If,ϕ=+sin(x).ln2(x)xthenfind:Im(ϕ)=?m.n

Question Number 163704    Answers: 2   Comments: 0

Ω= Σ_(n=1) ^∞ n(ζ (1+n) −1) =?

Ω=n=1n(ζ(1+n)1)=?

Question Number 163700    Answers: 3   Comments: 0

K(x) = ((3 cos x)/(5+4sin x)) {: ((max K(x))),((min K(x))) } =?

K(x)=3cosx5+4sinxmaxK(x)minK(x)}=?

Question Number 163682    Answers: 1   Comments: 0

Ω= ∫_0 ^( 1) (Li_( 2) ^ (x ))^( 2) dx = ? ■ m.n −−− −−−

Ω=01(Li2(x))2dx=?m.n

Question Number 163613    Answers: 0   Comments: 0

Question Number 163533    Answers: 0   Comments: 5

Re^ soudre (∂^2 u/∂x^2 )+(∂^2 u/∂y^2 )=e^(2x+y)

Resoudre´2ux2+2uy2=e2x+y

Question Number 163510    Answers: 0   Comments: 1

If 𝛗=∫_0 ^( (π/2)) (( 1)/( (√(sin^( 5) (x).cos(x))) +(√(cos^( 5) (x).sin(x)))))dx = find the value of : Γ^( 2) ((3/4) ). 𝛗

Ifϕ=0π21sin5(x).cos(x)+cos5(x).sin(x)dx=findthevalueof:Γ2(34).ϕ

Question Number 163487    Answers: 1   Comments: 0

Ω= ∫_0 ^( 1) (( sin^( 2) ( ln(x )). ln (x))/( (√x))) dx=? −−−−−

Ω=01sin2(ln(x)).ln(x)xdx=?

Question Number 163400    Answers: 2   Comments: 0

prove Ω= ∫_0 ^( ∞) cot^( −1) (1+x^( 2) )=((√((1/( (√2)))−(1/2))) ) π

proveΩ=0cot1(1+x2)=(1212)π

Question Number 163367    Answers: 2   Comments: 0

Question Number 163271    Answers: 0   Comments: 0

put : gcd( a , b )= (a, b ) if ( a ,b )= (a ,c )= (b ,c )=1 prove that : (abc , ab +ac +bc )=1

put:gcd(a,b)=(a,b)if(a,b)=(a,c)=(b,c)=1provethat:(abc,ab+ac+bc)=1

Question Number 163257    Answers: 0   Comments: 0

Re ( ∫_0 ^( 1) sin^( −1) ((( 1)/(1− x^( 2) )) )dx )=?

Re(01sin1(11x2)dx)=?

Question Number 163191    Answers: 0   Comments: 1

Question Number 163134    Answers: 1   Comments: 0

prove or disprove ∫_(2π) ^( 4π) (( sin(x))/x) dx >0 because ∫_(2π) ^( 3π) (( sin(x ))/x) dx > ∫_(3π) ^( 4π) ((∣sin(x)∣)/x) dx

proveordisprove2π4πsin(x)xdx>0because2π3πsin(x)xdx>3π4πsin(x)xdx

Question Number 163080    Answers: 1   Comments: 0

F(x)= (((x^2 −4x)^2 ))^(1/3) {: ((local maximum)),((absolut maximum)) } =?

F(x)=(x24x)23localmaximumabsolutmaximum}=?

Question Number 163045    Answers: 1   Comments: 0

prove that Σ_(n=1) ^∞ (( ( 2n+1 )!!)/((2n )!!)) (1/(2^( n) (2n +1)^( 2) )) =((π(√2))/4)−1

provethatn=1(2n+1)!!(2n)!!12n(2n+1)2=π241

Question Number 163033    Answers: 1   Comments: 0

Ω= ∫_0 ^( ∞) (( x − sin (x ))/x^( 3) )dx −−− solution−−− Ω=^(I.B.P) [ ((−1)/(2 x^( 2) )) (x−sin(x))]_0 ^∞ +(1/2) ∫_0 ^( ∞) ((1−cos (x))/x^( 2) )dx = (1/2) ∫_0 ^( ∞) (( 2sin^( 2) ((x/2)))/x^( 2) )dx=∫_0 ^( ∞) ((sin^( 2) ((x/2)))/x^( 2) )dx =^((x/2) = α) (1/2)∫_0 ^( ∞) ((sin^( 2) ( α))/α^( 2) ) dα = (1/2) [((−1)/α) sin^( 2) (α)]_0 ^∞ +(1/2)∫_0 ^( ∞) ((sin(2α))/α)dα =^(2α=ϕ) (1/2) ∫_0 ^( ∞) (( sin(ϕ ))/ϕ) dϕ =(π/4) −− Ω= (π/4) −−−

Ω=0xsin(x)x3dxsolutionΩ=I.B.P[12x2(xsin(x))]0+1201cos(x)x2dx=1202sin2(x2)x2dx=0sin2(x2)x2dx=x2=α120sin2(α)α2dα=12[1αsin2(α)]0+120sin(2α)αdα=2α=φ120sin(φ)φdφ=π4Ω=π4

Question Number 163002    Answers: 0   Comments: 0

prove that i:Σ_(n=0) ^∞ (((−1 )^( n) )/((n +(1/2))cosh(n+(1/2))π)) =(π/4) ii: ∫_0 ^( 1) (( sin( π x ))/(x^( x) ( 1−x )^( 1−x) )) (dx/(1+x)) =(π/4) −−−

provethati:n=0(1)n(n+12)cosh(n+12)π=π4ii:01sin(πx)xx(1x)1xdx1+x=π4

Question Number 162939    Answers: 0   Comments: 0

lim_( x→ 3) ( a ⌊x ⌋ + ⌊ −x⌋).tan(((πx)/2) )=−∞ a ∈ ?

limx3(ax+x).tan(πx2)=a?

Question Number 162924    Answers: 2   Comments: 0

𝛗 =∫_0 ^( ∞) (( e^( −x^( 2) ) .ln( x ))/( (√x))) dx=λ Γ((1/4)) λ=? ■

ϕ=0ex2.ln(x)xdx=λΓ(14)λ=?

Question Number 162804    Answers: 2   Comments: 0

Ω = ∫ sin^( 2) (x).cos^( 4) (x ) dx

Ω=sin2(x).cos4(x)dx

Question Number 162701    Answers: 1   Comments: 0

  Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com