Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 13

Question Number 160752    Answers: 1   Comments: 0

solve (d^2 y/dx^2 )−y=x^2 sin3x

solved2ydx2y=x2sin3x

Question Number 160603    Answers: 1   Comments: 0

(x+(√(x^2 +1)))(y+(√(y^2 +1)))=2021 ∀x,y∈R^+ . min (x+y)=?

(x+x2+1)(y+y2+1)=2021x,yR+.min(x+y)=?

Question Number 160577    Answers: 1   Comments: 0

Ω=∫_0 ^( 1) tan^( −1) (x).ln(x) = ? −−−−solution−−−− f(a)=∫_0 ^( 1) tan^( −1) ( x) .x^( a) dx = Σ_(n=1) ^∞ (( (−1)^( n−1) )/(2n−1)) ∫_0 ^( 1) x^( 2n+a−1) dx = Σ_(n=0) ^∞ (((−1)^( n−1) )/(2n−1)) ((1/(2n+ a)) ) Ω= f ′ (a )∣_(a=0) = Σ_(n=1) ^∞ (((−1)^n )/((2n−1)( 2n+ a)^( 2) )) Ω= f ′ (0 )=(1/4)Σ(( (−1 )^(n−1) (2n−1−2n ) )/(( 2n−1)n^( 2) )) =(1/4) Σ_(n=1) ^∞ (((−1)^(n−1) )/n^( 2) ) − Σ_(n=1) ^∞ (((−1)^( n−1) )/((2n−1)(2n))) = (π^( 2) /(48)) −{ Σ_(n=1) ^∞ {(((−1)^(n−1) )/(2n−1)) −(((−1)^( n−1) )/(2n))}} ∴ Ω = (π^( 2) /(48)) − (π/4) +(1/2) ln(2)

Ω=01tan1(x).ln(x)=?solutionf(a)=01tan1(x).xadx=n=1(1)n12n101x2n+a1dx=n=0(1)n12n1(12n+a)Ω=f(a)a=0=n=1(1)n(2n1)(2n+a)2Ω=f(0)=14Σ(1)n1(2n12n)(2n1)n2=14n=1(1)n1n2n=1(1)n1(2n1)(2n)=π248{n=1{(1)n12n1(1)n12n}}Ω=π248π4+12ln(2)

Question Number 160558    Answers: 1   Comments: 0

solve ⌊ x− (√(1−x^( 2) )) ⌋+⌊ x+ (√(1−x^( 2) )) ⌋=0

solvex1x2+x+1x2=0

Question Number 160545    Answers: 0   Comments: 0

Σ_(k=1) ^n (n/(n^2 +k)) (1/n)Σ_(k=1 ) ^n cos((1/( (√(n+k))))) convergente?

nk=1nn2+k1nnk=1cos(1n+k)convergente?

Question Number 160530    Answers: 2   Comments: 0

Question Number 160528    Answers: 0   Comments: 0

(2cosh(x)cos(y))dx+(sinh(x)sin(y))dy=0

(2cosh(x)cos(y))dx+(sinh(x)sin(y))dy=0

Question Number 160363    Answers: 0   Comments: 0

s>0 limΣ_(k=1) ^(2n) ( −1)^( k) .((( k)/(2n)) )^( s) = ?

s>0lim2nk=1(1)k.(k2n)s=?

Question Number 160252    Answers: 2   Comments: 0

∫_0 ^( 1) (( ln^( 2) (1−x )ln(x))/x)dx=?

01ln2(1x)ln(x)xdx=?

Question Number 160223    Answers: 0   Comments: 0

Ω:=∫_0 ^( ∞) (( x)/(( e^( x) +e^( −x) )^( 3) )) dx =?

Ω:=0x(ex+ex)3dx=?

Question Number 160159    Answers: 0   Comments: 0

prove that .. ∫_0 ^( ∞) (( x)/(cosh^( 3) (x ))) dx = G − (1/2) ■ G: catalan constant

provethat..0xcosh3(x)dx=G12G:catalanconstant

Question Number 159966    Answers: 0   Comments: 2

a y=(√(x+(√(x+(√(x+.....)))))) b y=(√(x(√(x(√(x(√(x.....)))))))) find (dy/dx)

ay=x+x+x+.....by=xxxx.....finddydx

Question Number 159918    Answers: 0   Comments: 2

y = sin 8x cos 4x y^((n)) =?

y=sin8xcos4xy(n)=?

Question Number 159874    Answers: 0   Comments: 3

Given the curve y=x^4 +3x^3 −6x^2 −3x determine for which value of α the tangent to the curve from point P(α,0) is maximum.

Giventhecurvey=x4+3x36x23xdetermineforwhichvalueofαthetangenttothecurvefrompointP(α,0)ismaximum.

Question Number 159982    Answers: 1   Comments: 0

(1+bf(x))f′′(x)=(p/(λa)) solve this equation: find f(x)

(1+bf(x))f(x)=pλasolvethisequation:findf(x)

Question Number 159854    Answers: 1   Comments: 0

Ω := ∫_0 ^( (π/4)) x.ln(sin(x))dx= ?

Ω:=0π4x.ln(sin(x))dx=?

Question Number 159664    Answers: 0   Comments: 2

prove that : Φ = ∫_0 ^( ∞) (( sin^( 4) (x))/x^( 3) )dx= ln(2) −−−−−−−−−

provethat:Φ=0sin4(x)x3dx=ln(2)

Question Number 159648    Answers: 2   Comments: 0

y = sin^2 (2x) y^((n)) =?

y=sin2(2x)y(n)=?

Question Number 159592    Answers: 1   Comments: 0

calculate: I :=∫_0 ^( ∞) (((arctan(x))/x))^3 dx=?

calculate:I:=0(arctan(x)x)3dx=?

Question Number 159540    Answers: 1   Comments: 0

prove that : 𝛗 := ∫_0 ^( ∞) (( sin((√x) ).sin((π/3) +(√x) ).sin(((2π)/3)+(√x) ).ln((1/x^( 2) ) ))/x)dx=^? π.(γ + ln(3) ) −−−−−−−−−− m.n

provethat:ϕ:=0sin(x).sin(π3+x).sin(2π3+x).ln(1x2)xdx=?π.(γ+ln(3))m.n

Question Number 159526    Answers: 0   Comments: 0

Ω= ∫_0 ^( ∞) (( sin^( 3) (x)ln(x))/x) dx=^(??) (π/8) (ln(3)−2γ) −−−−− solution.. Ω=∫_0^ ^( ∞) {(((3/4) sin(x)−(1/4) sin(3x))/x)} ln(x)dx = (3/4) (((−πγ)/2))− (1/4){ ∫_0 ^( ∞) ((sin(3x)ln(x))/x)dx=Ψ} ∴ Ψ := ∫_0 ^( ∞) (( sin(x).[ln(x)−ln(3)])/x)dx := −((πγ)/2) − ((ln(3).π)/2) ∴ Ω := ((−3πγ)/8) +((πγ)/8) +((π.ln(3))/8) := ((−2πγ)/8) + ((π.ln(3))/8) = (π/8) ( ln(3)−2γ )

Ω=0sin3(x)ln(x)xdx=??π8(ln(3)2γ)solution..Ω=0{34sin(x)14sin(3x)x}ln(x)dx=34(πγ2)14{0sin(3x)ln(x)xdx=Ψ}Ψ:=0sin(x).[ln(x)ln(3)]xdx:=πγ2ln(3).π2Ω:=3πγ8+πγ8+π.ln(3)8:=2πγ8+π.ln(3)8=π8(ln(3)2γ)

Question Number 159474    Answers: 1   Comments: 0

nice integral. prove that ∫^( ∞) _0 (( tan^( −1) (2x)+ tan^( −1) ((x/2) ))/(1+x^( 2) ))dx=(π^( 2) /4)

niceintegral.provethat0tan1(2x)+tan1(x2)1+x2dx=π24

Question Number 159465    Answers: 1   Comments: 0

simplify ξ := Σ_(n=1) ^∞ ( (( 1)/(Σ_(k=1) ^n k^3 )) )=?

simplifyξ:=n=1(1nk=1k3)=?

Question Number 159447    Answers: 1   Comments: 1

#calculate# Ω := ∫_0 ^( 1) ∫_0 ^( 1) (( x^( (t/2)) −x^( t) )/(1 − x)) dx dt = ? −−−m.n−−−

You can't use 'macro parameter character #' in math modeΩ:=0101xt2xt1xdxdt=?m.n

Question Number 159021    Answers: 1   Comments: 0

Question Number 158803    Answers: 1   Comments: 1

  Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15      Pg 16      Pg 17   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com