Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 14

Question Number 158691    Answers: 1   Comments: 0

Σ_(n=1) ^∞ (( (−1)^( n) H_( 2n) )/(2n)) =?

n=1(1)nH2n2n=?

Question Number 158503    Answers: 0   Comments: 5

Question Number 158489    Answers: 0   Comments: 0

find the partial derivatives of the function with respect to each variable f(x,y)=∫_x ^y g(t) dt

findthepartialderivativesofthefunctionwithrespecttoeachvariablef(x,y)=xyg(t)dt

Question Number 158322    Answers: 0   Comments: 0

prove that: Σ_(n=1) ^∞ tan^( −1) ( (1/F_( n) ) ).tan^( −1) ( (1/F_( n+1) ) )= (π^( 2) /8) Fibonacci numbers

provethat:n=1tan1(1Fn).tan1(1Fn+1)=π28Fibonaccinumbers

Question Number 158293    Answers: 3   Comments: 0

question# If , Ω =∫_0 ^( 1) ((ln^( 2) (1−x^( 4) ))/x) dx= a ζ b) find the value of , a , b .

You can't use 'macro parameter character #' in math modeIf,Ω=01ln2(1x4)xdx=aζb)findthevalueof,a,b.

Question Number 158259    Answers: 1   Comments: 1

Given x,y∈R^+ and ((x/5)+(y/3))((5/x)+(3/y))=139. If maximum and minimum of ((x+y)/( (√(xy)) )) is M and n respectively, then what the value of 3M−4n.

Givenx,yR+and(x5+y3)(5x+3y)=139.Ifmaximumandminimumofx+yxyisMandnrespectively,thenwhatthevalueof3M4n.

Question Number 158625    Answers: 0   Comments: 1

EI(∂^4 y/∂x^4 )+ρS(∂^2 y/∂t^2 )=0 (1) y(x,0)=U_0 (x) (∂y/∂t)(x,0)=V_0 (x) ; EI(∂^2 y/∂x^2 )(0,t)=EI(∂^2 y/∂x^2 )(L,t)=0

EI4yx4+ρS2yt2=0(1)y(x,0)=U0(x)yt(x,0)=V0(x);EI2yx2(0,t)=EI2yx2(L,t)=0

Question Number 158156    Answers: 1   Comments: 0

solve : ( x^( 2) +x −6)^( 3) + (7x^( 2) −9x −2)^( 3) −512(x^2 −x−1)^( 3) =0 x = ?

solve:(x2+x6)3+(7x29x2)3512(x2x1)3=0x=?

Question Number 158064    Answers: 1   Comments: 0

Make tangen line at point (2,3).

Maketangenlineatpoint(2,3).

Question Number 158060    Answers: 1   Comments: 0

Question Number 158049    Answers: 2   Comments: 0

Find derivative of this function 1). f(x)= x.sin x 2). f(x)= e^(5x) . log _2 (3x) 3). f(x)= 3^(3x) .(2x−1) 4). f(x)= ((3x^2 −2)/(4x+1))

Findderivativeofthisfunction1).f(x)=x.sinx2).f(x)=e5x.log2(3x)3).f(x)=33x.(2x1)4).f(x)=3x224x+1

Question Number 157952    Answers: 1   Comments: 0

f(x)=x^(2014) +2x^(2013) +3x^(2012) +4x^(2011) +...+2014x+2015 min f(x)=?

f(x)=x2014+2x2013+3x2012+4x2011+...+2014x+2015minf(x)=?

Question Number 157947    Answers: 1   Comments: 0

What are the coordinates of the points on the curve x^2 −y^2 =16 which nearest to (0,6)?

Whatarethecoordinatesofthepointsonthecurvex2y2=16whichnearestto(0,6)?

Question Number 157665    Answers: 2   Comments: 0

Question Number 157382    Answers: 1   Comments: 0

Question Number 157278    Answers: 3   Comments: 0

Question Number 157247    Answers: 3   Comments: 0

F(x,y)=x^2 −2xy+6y^2 −12x+2y+45 find x &y such that F(x,y) minimum

F(x,y)=x22xy+6y212x+2y+45findx&ysuchthatF(x,y)minimum

Question Number 157169    Answers: 1   Comments: 0

Question Number 157116    Answers: 1   Comments: 2

max ∧ min of f(x) =(√x) +4(√((1−x)/2))

maxminoff(x)=x+41x2

Question Number 156864    Answers: 0   Comments: 4

φ := ∫_0 ^( 1) (( ln (1−x^( 2) ))/(1+ x^( 2) )) dx = proof : φ = ∫_0 ^( 1) (( ln(1−x ))/(1+x^( 2) ))dx + (π/8)ln(2) .... I= ∫_0 ^( 1) ((ln ( 1−x ))/(1+x^( 2) ))dx =^(x=tan(t)) ∫_0 ^( (π/4)) ln( cos(t)−sin(t))dt−∫_0 ^( (π/4)) ln(cos(t))dt = ∫_0 ^( (π/4)) ln((√2) )dt +∫_0 ^( (π/4)) ln(sin((π/4) −t))dt−(G/2) +(π/4)ln(2) =((3π)/8) ln(2)−(G/2) −(G/2) −(π/4) ln(2)=(π/8)ln(2)−G φ = (π/4)ln(2) − G ■ m.n

ϕ:=01ln(1x2)1+x2dx=proof:ϕ=01ln(1x)1+x2dx+π8ln(2)....I=01ln(1x)1+x2dx=x=tan(t)0π4ln(cos(t)sin(t))dt0π4ln(cos(t))dt=0π4ln(2)dt+0π4ln(sin(π4t))dtG2+π4ln(2)=3π8ln(2)G2G2π4ln(2)=π8ln(2)Gϕ=π4ln(2)Gm.n

Question Number 156824    Answers: 1   Comments: 0

If x − z = tan^(− 1) (yz) and z = z(x, y), find ((δz)/(δx)) , ((δz)/(δy))

Ifxz=tan1(yz)andz=z(x,y),findδzδx,δzδy

Question Number 156617    Answers: 1   Comments: 0

Question Number 156584    Answers: 1   Comments: 1

find p if y=1−px−3x^2 if the maximum is 13 (help pls)

findpify=1px3x2ifthemaximumis13(helppls)

Question Number 156386    Answers: 1   Comments: 0

φ (n )= Σ_(k=1) ^n (−1 )^( k−1) ((( n)),(( k)) ) H_( k) Find the value of : Σ_(n=1) ^∞ (−1)^( n−1) φ ( n^( 2) ) =?

ϕ(n)=nk=1(1)k1(nk)HkFindthevalueof:n=1(1)n1ϕ(n2)=?

Question Number 156206    Answers: 1   Comments: 0

Ω :=∫_0 ^( 1) (√x) (√(1−(√x) )) (√(1−(√(1−(√x) )))) dx=?

Ω:=01x1x11xdx=?

Question Number 156137    Answers: 1   Comments: 0

  Pg 9      Pg 10      Pg 11      Pg 12      Pg 13      Pg 14      Pg 15      Pg 16      Pg 17      Pg 18   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com