Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 18

Question Number 147411    Answers: 2   Comments: 0

Question Number 147355    Answers: 1   Comments: 0

Question Number 147346    Answers: 1   Comments: 0

Question Number 147262    Answers: 2   Comments: 0

...# Calculus #... I := ∫_0 ^( 1) Li_( 2) (x^( 2) ) dx = ?

You can't use 'macro parameter character #' in math modeI:=∫01Li2(x2)dx=?

Question Number 147209    Answers: 2   Comments: 1

Question Number 147135    Answers: 3   Comments: 0

Question Number 146924    Answers: 1   Comments: 0

Montrer que Ī£_(k=0) ^(2nāˆ’1) cos^(2n) (š›‰+((kš›‘)/(2n)))= ((nC_(2n) ^n )/2^(2nāˆ’1) )

Montrerqueāˆ‘2nāˆ’1k=0cos2n(Īø+kĻ€2n)=nC2nn22nāˆ’1

Question Number 146632    Answers: 0   Comments: 0

Question Number 146602    Answers: 1   Comments: 0

Question Number 146523    Answers: 2   Comments: 0

Question Number 146442    Answers: 2   Comments: 0

(d/dn)∣_(n=1) H_n =?

ddn∣n=1Hn=?

Question Number 146300    Answers: 1   Comments: 0

Question Number 146366    Answers: 1   Comments: 0

Question Number 146164    Answers: 1   Comments: 0

calulate :: S : = Ī£_(n=1) ^āˆž (( H_((n/2) ) )/( 2^( n) )) =? .......m.n.

calulate::S:=āˆ‘āˆžn=1Hn22n=?.......m.n.

Question Number 146063    Answers: 1   Comments: 0

if g(x)=((x^( 2) āˆ’x)/(2xāˆ’1)) , D_g = [1 , āˆž) , lim_(xā†’āˆž) ((g^( āˆ’1) (x))/(ax + b)) = bāˆ’a (a <0 ) then find the value of Max (b ) D_( g) = Domain

ifg(x)=x2āˆ’x2xāˆ’1,Dg=[1,āˆž),limxā†’āˆžgāˆ’1(x)ax+b=bāˆ’a(a<0)thenfindthevalueofMax(b)Dg=Domain

Question Number 146054    Answers: 0   Comments: 0

I := ∫_0 ^( āˆž) e^( āˆ’x) . J_(1/2) (x ) dx J_(v ) (x ) = x^( v) Ī£_(n=0) ^( āˆž) (((āˆ’ 1 )^( n) x^( 2n) )/(2^( n + v) n ! Ī“ ( n + v +1 ))) ....

I:=∫0āˆžeāˆ’x.J12(x)dxJv(x)=xvāˆ‘āˆžn=0(āˆ’1)nx2n2n+vn!Ī“(n+v+1)....

Question Number 145701    Answers: 2   Comments: 1

Question Number 145620    Answers: 1   Comments: 0

(d/dx)(((x+((x+((x+...))^(1/3) ))^(1/3) ))^(1/3) )=?

ddx(x+x+x+...333)=?

Question Number 145602    Answers: 5   Comments: 0

.....Advanced .........Calculus..... Q:: Find the value of :: determinant ((( i :: š›— := ∫_0 ^( 1) Ln ( Ī“ ( 2 + x ) )dx = ? )),(( ii :: Ī© := Ī£_(n=1) ^āˆž (( 1)/( n ( 2n + 3 ))) = ?))) .....m.n.july.1970..... ā– 

.....Advanced.........Calculus.....Q::Findthevalueof::i::Ļ•:=∫01Ln(Ī“(2+x))dx=?ii::Ī©:=āˆ‘āˆžn=11n(2n+3)=?.....m.n.july.1970.....ā—¼

Question Number 145450    Answers: 2   Comments: 0

Question Number 145449    Answers: 1   Comments: 0

Question Number 145399    Answers: 1   Comments: 0

Prove that lim_(n→+āˆž) ∫^( n) _( 0) (t^n /(n!)) e^(āˆ’t) dt = (1/2)

Provethatlimn→+āˆžāˆ«0ntnn!eāˆ’tdt=12

Question Number 145164    Answers: 3   Comments: 0

Question Number 145163    Answers: 2   Comments: 0

Question Number 145021    Answers: 2   Comments: 0

Question Number 144995    Answers: 1   Comments: 0

Find the maximum distance between two points on the curve (x^4 /a^4 ) + (y^4 /b^4 ) = 1 .

Findthemaximumdistancebetweentwopointsonthecurvex4a4+y4b4=1.

  Pg 13      Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com