Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 19

Question Number 144899    Answers: 0   Comments: 0

Ω := ∫ ((√(1−sin(x)))/(cos (x))) e^(−(1/2) x) = ?

Ω:=1sin(x)cos(x)e12x=?

Question Number 144684    Answers: 1   Comments: 0

Question Number 144554    Answers: 1   Comments: 0

Question Number 144534    Answers: 2   Comments: 0

Find the shortest distance from the origin to the hyperbola x^2 +8xy+7y^2 =225 ,z=0

Findtheshortestdistancefromtheorigintothehyperbolax2+8xy+7y2=225,z=0

Question Number 144532    Answers: 1   Comments: 0

A rectangular box,open at the top is to have a volume of 32 cube feet What must be the dimensions so that the total surface is a minimum?

Arectangularbox,openatthetopistohaveavolumeof32cubefeetWhatmustbethedimensionssothatthetotalsurfaceisaminimum?

Question Number 144525    Answers: 2   Comments: 0

If y=cosh (x^2 −3x+1) (d^2 y/dx^2 ) =?

Ify=cosh(x23x+1)d2ydx2=?

Question Number 144389    Answers: 1   Comments: 0

∫ (x−1)h(x)dx = x^3 −sin 2x+(√(x^2 +1)) + c ⇒h ′(1)= ?

(x1)h(x)dx=x3sin2x+x2+1+ch(1)=?

Question Number 144351    Answers: 1   Comments: 0

Evaluate :: 𝛗:=∫_0 ^( ∞) (( sin (x)^(1/( 3 )) )log ((1/x) ))/x)dx=?

Evaluate::ϕ:=0sinx3)log(1x)xdx=?

Question Number 144311    Answers: 2   Comments: 2

......Nice .... Calculus...... Find the value of :: Θ :=Σ_(n =1) ^∞ (1/(4^( n) cos^( 2) ((( π)/( 2^( n + 2) )) ) )) =? ..........

......Nice....Calculus......Findthevalueof::Θ:=n=114ncos2(π2n+2)=?..........

Question Number 144301    Answers: 1   Comments: 0

Question Number 144200    Answers: 1   Comments: 0

Find, among all right circular cylinders of fixed volume V that one with smallest surface area (counting the areas of the faces at top and bottom )

Find,amongallrightcircularcylindersoffixedvolumeVthatonewithsmallestsurfacearea(countingtheareasofthefacesattopandbottom)

Question Number 143997    Answers: 2   Comments: 0

The maximum value of y = (√((x−3)^2 +(x^2 −2)^2 ))−(√(x^2 +(x^2 −1)^2 )) is (A) (√(10)) (C) 4 (B) 2(√5) (D) 10

Themaximumvalueofy=(x3)2+(x22)2x2+(x21)2is(A)10(C)4(B)25(D)10

Question Number 143783    Answers: 4   Comments: 0

Ω :=∫_(−∞) ^( ∞) ((log(2+x^( 2) ))/(4+x^( 2) ))dx=?

Ω:=log(2+x2)4+x2dx=?

Question Number 143781    Answers: 3   Comments: 0

Question Number 143609    Answers: 1   Comments: 0

Prove that:: Ω:=∫_0 ^( 1) ((ln^2 (1−x).ln(x))/x)dx=((−1)/2) ζ (4 ) Without using the “Beta function” m.n

Provethat::Ω:=01ln2(1x).ln(x)xdx=12ζ(4)WithoutusingtheBetafunctionm.n

Question Number 143505    Answers: 1   Comments: 1

Question Number 143501    Answers: 0   Comments: 0

Question Number 143461    Answers: 3   Comments: 0

Prove that : ∀n∈N^∗ a. Σ_(k=1) ^n C_n ^k (((−1)^k )/k) = Σ_(k=1) ^n (1/k) b. Σ_(k=1) ^n C_n ^k (((−1)^k )/(2k+1)) = (4^n /((2n+1)C_(2n) ^n ))

Provethat:nNa.nk=1Cnk(1)kk=nk=11kb.nk=1Cnk(1)k2k+1=4n(2n+1)C2nn

Question Number 143454    Answers: 1   Comments: 0

........nice .......integral....... T :=∫_0 ^( ∞) ((arctan(x))/x^( ln(x) +1) )dx=^? ((π(√π))/4)

........nice.......integral.......T:=0arctan(x)xln(x)+1dx=?ππ4

Question Number 143429    Answers: 1   Comments: 0

....... nice .....integral....... Evaluate :: ξ := ∫_0 ^( 1) ((ln(1−t))/(1+t^2 )) dt =?

.......nice.....integral.......Evaluate::ξ:=01ln(1t)1+t2dt=?

Question Number 143231    Answers: 0   Comments: 0

.....mathematical ......Analysis.... if :: 𝛗(n):=∫_0 ^( 1) x^(2n−1) log(1+x)dx then find the value of :: Θ:= Σ_(n=1) ^∞ (−1)^n 𝛗(n) .......m.n

.....mathematical......Analysis....if::ϕ(n):=01x2n1log(1+x)dxthenfindthevalueof::Θ:=n=1(1)nϕ(n).......m.n

Question Number 143113    Answers: 0   Comments: 1

x^3 =(1/(3!))∫_0 ^x f(x−t)f(t)dt f(x)=?

x3=13!0xf(xt)f(t)dtf(x)=?

Question Number 143109    Answers: 3   Comments: 1

Question Number 143086    Answers: 2   Comments: 0

Evaluate :: Ω:=∫_0 ^( (π/4)) ((ln(tan(x)).sin^π^e (2x))/((sin^π^e (x)+cos^π^e (x))^2 ))dx

Evaluate::Ω:=0π4ln(tan(x)).sinπe(2x)(sinπe(x)+cosπe(x))2dx

Question Number 142935    Answers: 2   Comments: 0

Question Number 142870    Answers: 1   Comments: 0

  Pg 14      Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com