Question and Answers Forum |
DifferentiationQuestion and Answers: Page 2 |
x |
If x^m .y^n = (x + y)^(m + n) then (d^2 y/dx^2 ) = ? |
If e^y (x + 1) = 1 then prove that (d^2 y/dx^2 ) = ((dy/dx))^2 . |
If y = (1 + x)(1 + x^2 )(1 + x^4 ) .... (1 + x^(2n) ) then find (dy/dx) at x = 0. |
f(x)=tan^2 x (√(tan x((tan x((tan x((tan x(√(...))))^(1/5) ))^(1/4) ))^(1/3) )) f ′((π/4))=? |
∫_0 ^( 1) (( ln(1−x )ln(1+x ))/x)dx = Σ_(n=1) ^∞ Ω_n find : Σ_(n=1) ^∞ n Ω_n = ? |
ζ |
x^3 +y^3 =1 find the implceat second derivative |
∫_1 ^∞ (x/(x^3 +lnx)) dx=? |
if y=(x)^(1/7) prove that y^′ =(1/(7 (x^6 )^(1/7) )) |
Ω= ∫_(1/e) ^( e) (( arctan(x))/x) dx=? |
prove that: (e)^(1/4) < ∫_0 ^( 1) e^( t^2 ) dt< ((1 + e)/2) |
A rectangular enclosure is to be made against a straight wall using three lengths of fencing. The total length of the fencing available is 50m. Show that the area of the enclosure is 50x − 2x^2 , where x is the length of the sides perpendicular to the wall. Hence find the maximum area of the enclosure. |
If , f : [ 0 , b] →^(continuous) R , g : R →_(b−periodic) ^(continuous) R ⇒ lim_(n→∞) ∫_0 ^( b) f(x)g(nx)dx=^? (1/b) ∫_0 ^( b) f(x)dx .∫_0 ^( b) g(x)dx |
calculate ... 𝛗= ∫_0 ^( 1) (( tanh^( −1) (x))/((1 + x )^( 2) )) dx = ? |
tan^3 (xy^2 +y)=x find (dy/dx) |
let f(x)=tanx find f^((n)) (x) with n integr natural |
A ball lies on the function z=xy at the point (1,2,2). Find the point in the xy−plane where the ball will touch it. (an unsolved old question Q200929) |