Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 20

Question Number 142854    Answers: 0   Comments: 1

The maximum value of y=(√((x−3)^2 +(x^2 −2)^2 ))−(√(x^2 +(x−1)^2 )) is

Themaximumvalueofy=(x3)2+(x22)2x2+(x1)2is

Question Number 142777    Answers: 0   Comments: 2

Question Number 142773    Answers: 2   Comments: 0

.......nice ......integral...... 𝛗:=∫_(0 ) ^( 1) ((li_2 (1−x))/(2−x)) dx=?? .......m.n...

.......nice......integral......ϕ:=01li2(1x)2xdx=??.......m.n...

Question Number 142723    Answers: 1   Comments: 0

....... discrete ..... mathematics....... prove that: Σ_(n=1) ^∞ (1/(F_(2n+1) −1))=^? ((5−(√5))/2) F_n :: fibonacci sequence...

.......discrete.....mathematics.......provethat:n=11F2n+11=?552Fn::fibonaccisequence...

Question Number 142698    Answers: 1   Comments: 0

Prove that ∀n∈N^∗ Π_(k=1) ^(n−1) sin(((kπ)/(2n))) = Π_(k=1) ^(n−1) cos(((kπ)/(2n)))

ProvethatnNn1k=1sin(kπ2n)=n1k=1cos(kπ2n)

Question Number 142681    Answers: 0   Comments: 2

prove that :: 𝛗:=∫_0 ^( ∞) ((ln(1+cos(x)))/(1+e^( x) ))dx=0 ................

provethat::ϕ:=0ln(1+cos(x))1+exdx=0................

Question Number 142655    Answers: 2   Comments: 0

evaluate..... Σ_(n=1) ^∞ (((n.cos(nπ))/(Γ (2n+2))))=? ..... .......

evaluate.....n=1(n.cos(nπ)Γ(2n+2))=?............

Question Number 142531    Answers: 0   Comments: 0

if 𝛗 (q):= ∫_1 ^( ∞) (1/( (√x) (q+x)^x ))dx then :: lim _(q→1) 𝛗(q):=?

ifϕ(q):=11x(q+x)xdxthen::limq1ϕ(q):=?

Question Number 142502    Answers: 0   Comments: 0

(dy/dx) y= 3a^x −cot 2x

dydxy=3axcot2x

Question Number 142349    Answers: 2   Comments: 0

Σ_(n=0) ^∞ ((ζ(2n+2)(−1)^n )/4^n )=?

n=0ζ(2n+2)(1)n4n=?

Question Number 142318    Answers: 1   Comments: 0

Nice...≽≽≽∗∗∗≼≼≼...Calculus Ω:=∫_0 ^( 1) (((1−(x)^(1/3) )(1−((x ))^(1/5) )(1−(x)^(1/7) ))/(ln( ((x ))^(1/3) ))) dx=? ....m.n

Nice...≽≽≽≼≼≼...CalculusΩ:=01(1x3)(1x5)(1x7)ln(x3)dx=?....m.n

Question Number 142275    Answers: 0   Comments: 0

.......Advanced ...∗∗∗∗∗ ...Integral...... Prove that :: Φ :=∫_0 ^( 1) ((1−x)/((1−x+x^2 )log(x)))dx= proof:: Φ:=∫_0 ^( 1) ((1−x^2 )/((1−x^3 )log(x)))dx f (a):= ∫_0 ^( 1) ((1−x^a )/((1−x^3 )log(x))) Φ := f (2) ........✓ f ′(a):=∫_0 ^( 1) ((−x^a log(x))/((1−x^3 )log(x)))=∫_0 ^( 1) ((−x^a )/(1−x^3 ))dx (★) (★):: x^3 =y ⇒ f ′(a):=(1/3)∫_0 ^( 1) ((y^((−2)/3) −y^((a/3)−(2/3)) )/(1−y))dy :=(1/3)∫_0 ^( 1) ((y^((−2)/3) −1+1−y^((a/3)−(1/3)) )/(1−y))dy :=(1/3)(ψ((a/3)+(2/3))−ψ((2/3))) f (a):=log(Γ((a/3)+(2/3)))−(a/3)ψ((2/3))+C f (0):=0=log(Γ((2/3)))+C C :=−log(Γ((2/3))) Φ:= f (2)=log(Γ((4/3)))−(2/3) ψ((2/3))−log(Γ((2/3))) :=log(((Γ((4/3)))/(Γ((2/3)))))−(2/3)ψ((2/3)) ....✓

.......Advanced......Integral......Provethat::Φ:=011x(1x+x2)log(x)dx=proof::Φ:=011x2(1x3)log(x)dxf(a):=011xa(1x3)log(x)Φ:=f(2)........f(a):=01xalog(x)(1x3)log(x)=01xa1x3dx()()::x3=yf(a):=1301y23ya3231ydy:=1301y231+1ya3131ydy:=13(ψ(a3+23)ψ(23))f(a):=log(Γ(a3+23))a3ψ(23)+Cf(0):=0=log(Γ(23))+CC:=log(Γ(23))Φ:=f(2)=log(Γ(43))23ψ(23)log(Γ(23)):=log(Γ(43)Γ(23))23ψ(23)....

Question Number 142268    Answers: 0   Comments: 0

∫(e^x /(cosx))dx

excosxdx

Question Number 141947    Answers: 2   Comments: 0

Ω:=∫_0 ^( 1) (((√(1−x)) arcsin(x))/( (√(1+x))))dx=??

Ω:=011xarcsin(x)1+xdx=??

Question Number 141916    Answers: 1   Comments: 0

prove that:: I:=∫_0 ^( (π/2)) arccosh(sin(x)+cos(x))dx=(π/2)ln(2) ..

provethat::I:=0π2arccosh(sin(x)+cos(x))dx=π2ln(2)..

Question Number 141797    Answers: 0   Comments: 0

Question Number 141759    Answers: 0   Comments: 0

Question Number 141716    Answers: 1   Comments: 0

(x^2 lnx)y′′−xy′+y=0

(x2lnx)yxy+y=0

Question Number 141668    Answers: 1   Comments: 0

.......Advanced ...★ ...★ ... Calculus....... if Ω =Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n ) then prove that :: (1/2) = e^(Ω−1) proof :: method (1): ψ (1+x )= −γ+Σ_(n=2) ^∞ (−1)^n ζ(n)x^(n−1) ( Maclaurin series for ψ(x+1) ) x:=(1/2) ⇒ ψ ((3/2) )=−γ + 2Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n ) (∗ ) we know that :: ψ(1+x)=(1/x)+ψ(x) ( ∗ ) ⇛ ψ ((3/2))=2+ψ((1/2))=−γ+2Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n ) (∗) ⇛ 2−γ−ln(4)=−γ+2Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n ) ln((e/2))= Σ_(n=2) ^∞ (((−1)^n ζ(n))/2^n ) =Ω (1/2) = e^(Ω −1) ....✓ ...m.n.july.1970...

.......Advanced.........Calculus.......ifΩ=n=2(1)nζ(n)2nthenprovethat::12=eΩ1proof::method(1):ψ(1+x)=γ+n=2(1)nζ(n)xn1(Maclaurinseriesforψ(x+1))x:=12ψ(32)=γ+2n=2(1)nζ(n)2n()weknowthat::ψ(1+x)=1x+ψ(x)()ψ(32)=2+ψ(12)=γ+2n=2(1)nζ(n)2n()2γln(4)=γ+2n=2(1)nζ(n)2nln(e2)=n=2(1)nζ(n)2n=Ω12=eΩ1.......m.n.july.1970...

Question Number 141512    Answers: 0   Comments: 0

Σ_(n=1 ) ^∞ ((sin((((2n−1)π)/6)))/((2n−1)^2 )) = a.G a = ? (G:= catalan constant)

n=1sin((2n1)π6)(2n1)2=a.Ga=?(G:=catalanconstant)

Question Number 141475    Answers: 2   Comments: 0

Find the smallest value of (√(x^2 +y^2 )) among all values of x & y satisfying 3x−y = 20

Findthesmallestvalueofx2+y2amongallvaluesofx&ysatisfying3xy=20

Question Number 141444    Answers: 0   Comments: 0

Question Number 141346    Answers: 1   Comments: 0

Question Number 141322    Answers: 0   Comments: 0

......advanced........calculus....... prove that:: ξ:=Π_(n=2) ^∞ e(1−(1/n^2 ))^n^2 =(π/(e(√e)))

......advanced........calculus.......provethat::ξ:=n=2e(11n2)n2=πee

Question Number 141320    Answers: 1   Comments: 0

......nice ......calculuus..... prove that:: 𝛗:=∫_0 ^( ∞) ∫_0 ^( ∞) ((A rctan(x^2 y^2 ))/(x^4 +y^4 ))dxdy=((π^2 (√2))/(16)) .....

......nice......calculuus.....provethat::ϕ:=00Arctan(x2y2)x4+y4dxdy=π2216.....

Question Number 141368    Answers: 2   Comments: 0

A closed cylindrical can be is to hold 1 liters of liquid . How should we choose the height and radius to minimize the amount of material needed to manufacture the can ?

Aclosedcylindricalcanbeistohold1litersofliquid.Howshouldwechoosetheheightandradiustominimizetheamountofmaterialneededtomanufacturethecan?

  Pg 15      Pg 16      Pg 17      Pg 18      Pg 19      Pg 20      Pg 21      Pg 22      Pg 23      Pg 24   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com