Question and Answers Forum

All Questions   Topic List

DifferentiationQuestion and Answers: Page 9

Question Number 168799    Answers: 0   Comments: 0

If the function f is continuous in [a,b] prove that lim_(x→∞ ) ((b−a)/n)Σ_(k=1) ^n f(a+((k(b−a))/n))=∫_a ^b f(x)dx

Ifthefunctionfiscontinuousin[a,b]provethatlimxbannk=1f(a+k(ba)n)=abf(x)dx

Question Number 168755    Answers: 0   Comments: 5

∫(1/(x+(√(1−x)))) dx

1x+1xdx

Question Number 168428    Answers: 1   Comments: 0

solve f(x)= x +(√(x^( 2) −3x +2)) R _f =? R_( f) : rang of f

solvef(x)=x+x23x+2Rf=?Rf:rangoff

Question Number 168348    Answers: 2   Comments: 0

Question Number 168244    Answers: 3   Comments: 0

Question Number 167899    Answers: 1   Comments: 0

Question Number 167889    Answers: 1   Comments: 0

Question Number 167838    Answers: 1   Comments: 0

(dy/dx)=8x+4y+(2x+y−1)^2 y=?

dydx=8x+4y+(2x+y1)2y=?

Question Number 167709    Answers: 0   Comments: 0

Question Number 167630    Answers: 0   Comments: 0

Question Number 167567    Answers: 1   Comments: 3

Find the coordinates of the point on the curve y=3x^2 −2x−5, where the tangent is parallel to the line y−5=8x.

Findthecoordinatesofthepointonthecurvey=3x22x5,wherethetangentisparalleltotheliney5=8x.

Question Number 167554    Answers: 3   Comments: 0

∫_0 ^∞ ((3x^2 )/( (√((5x^2 +1)^3 )))) dx

03x2(5x2+1)3dx

Question Number 167549    Answers: 0   Comments: 0

Question Number 167473    Answers: 2   Comments: 0

solve ∫_2 ^( 3) ⌊ x^( 2) − 2x +5 ⌋dx=?

solve23x22x+5dx=?

Question Number 167404    Answers: 1   Comments: 0

Question Number 167336    Answers: 1   Comments: 0

0< x<(π/2) f(x)= ((sin(x) ))^(1/(20)) + ((cos(x)))^(1/(20)) R_( f) =? (Range )

0<x<π2f(x)=sin(x)20+cos(x)20Rf=?(Range)

Question Number 167321    Answers: 0   Comments: 3

Question Number 167301    Answers: 3   Comments: 0

Question Number 167267    Answers: 1   Comments: 0

Question Number 167230    Answers: 0   Comments: 0

lim_( α→∞) { (α ∫_0 ^( ∞) sin( x^( α) ) dx )=ϕ(α)]= (π/2) −−−− ∫_0 ^( ∞) sin(x^( α) )dx =^(x^( α) = y) (1/α)∫_0 ^( ∞) (( sin(y))/y^( 1−(1/α)) ) dy ⇒ α ∫_0 ^( ∞) sin(x^( α) ) dx = ∫_0 ^( ∞) (( sin(y))/y^( 1−(1/α)) ) dy = (( π)/(2 Γ (1−(1/α))sin ((π/2) (1−(1/α))))) = (π/(2Γ (1−(1/α))cos ((π/(2α)) ))) = ϕ (α ) lim_( α→∞) ϕ (α )=^((1/α) =β) lim_( β→0) (π/(2Γ (1−β)cos ((π/2) β))) = (π/2)

limα{(α0sin(xα)dx)=φ(α)]=π20sin(xα)dx=xα=y1α0sin(y)y11αdyα0sin(xα)dx=0sin(y)y11αdy=π2Γ(11α)sin(π2(11α))=π2Γ(11α)cos(π2α)=φ(α)limαφ(α)=1α=βlimβ0π2Γ(1β)cos(π2β)=π2

Question Number 167167    Answers: 1   Comments: 0

Find minimum value of function f(x)=2x−(√(x+1))−(√(x^2 −1))

Findminimumvalueoffunctionf(x)=2xx+1x21

Question Number 167164    Answers: 1   Comments: 0

Ω=∫_0 ^( (π/2)) (( sin^( 2) (x))/((sin(x)+cos(x))^( 6) )) dx=?

Ω=0π2sin2(x)(sin(x)+cos(x))6dx=?

Question Number 167158    Answers: 1   Comments: 0

Question Number 166872    Answers: 2   Comments: 0

∫_0 ^( ∞) (( e^( −x) .ln(x).sin(x))/x) dx = −(π/8) (2γ + ln(2))

0ex.ln(x).sin(x)xdx=π8(2γ+ln(2))

Question Number 166690    Answers: 1   Comments: 0

Calculate If , 𝛗= ∫_0 ^( 1) (( tanh^( −1) ( x^( 3) ))/x) dx = α.ζ( 2) then , α = ? ■ M.N −−−−−−−

CalculateIf,ϕ=01tanh1(x3)xdx=α.ζ(2)then,α=?M.N

Question Number 166437    Answers: 1   Comments: 0

calculate Ω=∫_0 ^( 1) (( ln(1−x ).ln(1+ x ))/x^( 2) ) dx=? −−−−−−−

calculateΩ=01ln(1x).ln(1+x)x2dx=?

  Pg 4      Pg 5      Pg 6      Pg 7      Pg 8      Pg 9      Pg 10      Pg 11      Pg 12      Pg 13   

Terms of Service

Privacy Policy

Contact: info@tinkutara.com