Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 42823 by rahul 19 last updated on 03/Sep/18

Evaluate :  ∫_(−5) ^( 5)  x^2 [x+(1/2)]dx =  ?  where [.]= greatest integer function

Evaluate:55x2[x+12]dx=?where[.]=greatestintegerfunction

Commented by prof Abdo imad last updated on 03/Sep/18

changement x =−5+t give  I = ∫_0 ^(10) (−5+t)^2 [−5+t +(1/2)]dt  =∫_0 ^(10) (t^2 −10t +25){−5 +[t+(1/2)]}dt  =−5 ∫_0 ^(10)  (t^2 −10t +25)dt +∫_0 ^(10) (t^2 −10t +25)[t+(1/2)]dt  but ∫_0 ^(10) (t^2 −10t +25)dt =[(t^3 /3) −5t^2  +25t]_0 ^(10)   =((10^3 )/3) −500 +250 =((1000)/3) −250 =((1000−750)/3)  =((250)/3)   also we have  ∫_0 ^(10) (t^2 −10t +25)[t+(1/2)]dt  =Σ_(k=0) ^9   ∫_k ^(k+1) (t^2 −10t +25)[t+(1/2)]dt  but we know that [x+y]=[x]+[y]+ξ withξ=0or ξ=1  ∫_0 ^(10) (t^2 −10t +25)[t+(1/2)]dt=  =Σ_(k=0) ^9  ∫_k ^(k+1) (t^2 −10t +25)(k +ξ)dt  =Σ_(k=0) ^9 (k+ξ) [(t^3 /3) −5t^2  +25t]_k ^(k+1)   =Σ_(k=0) ^9 (k+ξ){ (((k+1)^3 )/3) −5(k+1)^2  +25(k+1)  −(k^3 /3) +5k^2  −25k} =.....

changementx=5+tgiveI=010(5+t)2[5+t+12]dt=010(t210t+25){5+[t+12]}dt=5010(t210t+25)dt+010(t210t+25)[t+12]dtbut010(t210t+25)dt=[t335t2+25t]010=1033500+250=10003250=10007503=2503alsowehave010(t210t+25)[t+12]dt=k=09kk+1(t210t+25)[t+12]dtbutweknowthat[x+y]=[x]+[y]+ξwithξ=0orξ=1010(t210t+25)[t+12]dt==k=09kk+1(t210t+25)(k+ξ)dt=k=09(k+ξ)[t335t2+25t]kk+1=k=09(k+ξ){(k+1)335(k+1)2+25(k+1)k33+5k225k}=.....

Answered by MJS last updated on 03/Sep/18

in steps:  [x+(1/2)]=c  x∈[−5; −4.5[ ⇒ c=−5  x∈[−4.5; −3.5[ ⇒ c=−4  x∈ [−3.5; −2.5[ ⇒ c=−3  x∈ [−2.5; −1.5[ ⇒ c=−2  x∈ [−1.5; −.5[ ⇒ c=−1  x∈ [−.5; .5[ ⇒ c=0  x∈ [.5; 1.5[ ⇒ c=1  x∈ [1.5; 2.5[ ⇒ c=2  x∈ [2.5; 3.5[ ⇒ c=3  x∈ [3.5; 4.5[ ⇒ c=4  x∈ [4.5; 5] ⇒ c=5  ∫_(−5) ^5 x^2 [x+(1/2)]dx=Σc∫x^2 dx=Σ(c/3)[x^3 ]_a ^b =  =−(5/3)((−4.5)^3 −(−5)^3 )−(4/3)((−3.5)^3 −(−4.5)^3 )−(3/3)((−2.5)^3 −(−3.5)^3 )...  ...+(3/3)(3.5^3 −2.5^3 )+(4/3)(4.5^3 −3.5^3 )+(5/3)(5^3 −4.5^3 )=  =−(5/3)(5^3 −4.5^3 )+(5/3)(5^3 −4.5^3 )...=0

insteps:[x+12]=cx[5;4.5[c=5x[4.5;3.5[c=4x[3.5;2.5[c=3x[2.5;1.5[c=2x[1.5;.5[c=1x[.5;.5[c=0x[.5;1.5[c=1x[1.5;2.5[c=2x[2.5;3.5[c=3x[3.5;4.5[c=4x[4.5;5]c=555x2[x+12]dx=Σcx2dx=Σc3[x3]ab==53((4.5)3(5)3)43((3.5)3(4.5)3)33((2.5)3(3.5)3)......+33(3.532.53)+43(4.533.53)+53(534.53)==53(534.53)+53(534.53)...=0

Commented by rahul 19 last updated on 03/Sep/18

Thank you sir ! ��

Terms of Service

Privacy Policy

Contact: info@tinkutara.com