All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 7191 by Tawakalitu. last updated on 15/Aug/16
EvaluateΣsin(3n)nfrom1toinfinity
Answered by Yozzia last updated on 15/Aug/16
Definethefunctionf(x)=xfor0<x<1,period=2.ForFourierseriesoffhavingtheform(1)f(x)=a02+∑∞n=1{ancosnπxL+bnsinnπxL},2L=2=period⇒L=1,a0=1L∫cc+2Lf(x)dx,c∈R.∴Forc=0,a0=11∫02xdx=x22∣02=2⇒a02=1.an=1L∫cc+2Lf(x)cosnπxLdxn=1,2,3,...Letc=0.∴an=11∫02xcosnπxdxan=xnπsinnπx∣02−∫021nπsinnπxdxan=1n2π2cosnπx∣02=1n2π2(cos2nπ−1)=0bn=1L∫cc+2Lf(x)sinnπxLdx(n=1,2,3,...)Takec=0.∴bn=11∫02xsinnπxdxbn=−xcosnπxnπ∣02−∫02−cosnπxnπdxbn=−2nπ+[1n2π2sinnπx]02bn=−2nπ+0=−2nπ(n≠0).∴in(1)x=1+∑∞n=1−2sinnπxnπx=1−2π∑∞n=1sinnπxnLetx=3π∉Z(Ifx∈Z,xisapointofdiscontinuitywhoseoutputisgivenbyf(x+0)+f(x−0)2)∴3π=1−2π∑∞n=1sin3nn⇒∑∞n=1sin3nn=π2(1−3π)∑∞n=1sin3nn=π−32
Commented by Tawakalitu. last updated on 15/Aug/16
Amveryhappy.Thankyousir.ireallyappreciate.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com