Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 85260 by Umar last updated on 20/Mar/20

Evaluate using cauchy′s integral            ∫_c  (e^(iπ) /((z^2 +4)^2 (z+1)^2 ))dz  where c is a circle with ∣z−i∣=3.5    help please

Evaluateusingcauchysintegralceiπ(z2+4)2(z+1)2dzwherecisacirclewithzi∣=3.5helpplease

Commented by mathmax by abdo last updated on 20/Mar/20

I =∫_C   (e^(iπ) /((z^2  +4)^2 (z+1)^2 ))dz  let W(z) =(e^(iπ) /((z^2  +4)^2 (z+1)^2 )) poles of W?  W(z) =(e^(iπ) /((z−2i)^2 (z+2i)^2 (z+1)^2 ))   so the poles are 2i,−2i  and −1  (doubles) we have ∣2i−i∣=∣i∣=1<(7/2)  ∣−2i−i∣ =∣3i∣=3<(7/2)  ∣−1−i∣ =∣1+i∣=(√2)<(7/2) so ∫_C W(z)dz =  2iπ{ Res(W,2i) +Res(W,−2i) +Res(W,−1)}  Res(W,2i) =lim_(z→2i)   (1/((2−1)!)){ (z−2i)^2 W(z)}^((1))   =lim_(z→2i)    { (e^(iπ) /((z+2i)^2 (z+1)^2 ))}^((1))   =e^(iπ)  lim_(z→2i)   { −((2(z+2i)(z+1)^2  +2(z+1)(z+2i)^2 )/((z+2i)^4 (z+1)^4 ))}  =−e^(iπ)  lim_(z→2i)    {((2(2z+1)+2(z+2i))/((z+2i)^3 (z+1)^3 ))}  =−e^(iπ) ×((2(4i+1)+2(4i))/((4i)^3 (2i+1)^3 )) =−e^(iπ)  ×((16i +2)/(−64i (2i+1)^3 )) =e^(iπ) ×((8i+1)/(32i(2i+1)^3 ))  we do the same way for Res(W,−2i)  Res(W,−1) =lim_(z→−1)  (1/((2−1)!)){(z+1)^2 W(z)}^((1))   =lim_(z→−1)    {(e^(iπ) /((z−2i)^2 (z+2i)^2 ))}^((1))   =lim_(z→−1)    e^(iπ) {  (1/((z^2  +4)^2 ))}^((1))  =e^(iπ) lim_(z→−1)  −((2(2z)(z^2  +4))/((z^2  +4)^4 ))  =−4e^(iπ)  lim_(z→−1)    (z/((z^2  +4)^3 )) =4e^(iπ)  ×(1/5^3 )

I=Ceiπ(z2+4)2(z+1)2dzletW(z)=eiπ(z2+4)2(z+1)2polesofW?W(z)=eiπ(z2i)2(z+2i)2(z+1)2sothepolesare2i,2iand1(doubles)wehave2ii∣=∣i∣=1<722ii=∣3i∣=3<721i=∣1+i∣=2<72soCW(z)dz=2iπ{Res(W,2i)+Res(W,2i)+Res(W,1)}Res(W,2i)=limz2i1(21)!{(z2i)2W(z)}(1)=limz2i{eiπ(z+2i)2(z+1)2}(1)=eiπlimz2i{2(z+2i)(z+1)2+2(z+1)(z+2i)2(z+2i)4(z+1)4}=eiπlimz2i{2(2z+1)+2(z+2i)(z+2i)3(z+1)3}=eiπ×2(4i+1)+2(4i)(4i)3(2i+1)3=eiπ×16i+264i(2i+1)3=eiπ×8i+132i(2i+1)3wedothesamewayforRes(W,2i)Res(W,1)=limz11(21)!{(z+1)2W(z)}(1)=limz1{eiπ(z2i)2(z+2i)2}(1)=limz1eiπ{1(z2+4)2}(1)=eiπlimz12(2z)(z2+4)(z2+4)4=4eiπlimz1z(z2+4)3=4eiπ×153

Answered by mind is power last updated on 20/Mar/20

(1/(2iπ))∫_C ((f(z))/(z−w))dz=f(w)  werr C is contour wich contien w  w∈C  f′(w)=(1/(2iπ))∫_C ((f(z))/((z−w)^2 ))dz  ⇒(1/(2iπ))∫_C (1/((z−2i)^2 ))((e^(iπ) dz)/((z+2i)^2 (z+1)^2 ))=g′(2i)+h′(−2i)+t′(−1)  g(z)=(e^(iπ) /((z+2i)^2 (z+1)^2 )),h(z)=(e^(iπ) /((z−2i)^2 (z+1)^2 )),t(z)=(e^(iπ) /((z^2 +4)^2 ))  ⇒∫((e^(iπ) dz)/((z^2 +4)^2 (z+1)^2 ))=2iπ(g′(2i)+h′(−2i)+t′(−1))    =

12iπCf(z)zwdz=f(w)werrCiscontourwichcontienwwCf(w)=12iπCf(z)(zw)2dz12iπC1(z2i)2eiπdz(z+2i)2(z+1)2=g(2i)+h(2i)+t(1)g(z)=eiπ(z+2i)2(z+1)2,h(z)=eiπ(z2i)2(z+1)2,t(z)=eiπ(z2+4)2eiπdz(z2+4)2(z+1)2=2iπ(g(2i)+h(2i)+t(1))=

Commented by Umar last updated on 20/Mar/20

thanks

thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com