All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 12098 by Nayon last updated on 13/Apr/17
Evaluate∫x2−a2dx
Answered by sma3l2996 last updated on 13/Apr/17
A=∫x2−a2dx=a∫(xa)2−1dxletu=xa⇒du=dxaA=a2∫u2−1duletu=cosh(t)⇒du=sinh(t)dtsinh(t)du=sinh2tdt⇔cosh2t−1du=sinh2tdtu2−1du=sinh2tdtA=a2∫sinh2tdt=a2∫cosh(2t)−12dtA=a22(sinh(2t)2−t)+CA=a24(sinh(2acosh(xa))−acosh(xa))+C
Commented by Nayon last updated on 13/Apr/17
plsanswithoutusinghyperbolictrig...
Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17
x=ait,dx=aidt,i=−1I=∫−a2t2−a2aidt=−a2∫t2+1dt==−a2[tt2+1−∫t2tdt2t2+1]==−a2[tt2+1−∫(t2+1)−1t2+1dt]==−a2[tt2+1−∫t2+1dt+∫dtt2+1]=−a2tt2+1+a2∫t2+1dt−a22ln(t+t2+1)2I=−a2xai.x2−a2ai−a22ln(xai+x2−a2ai)⇒I=x2x2−a2−a24ln(x+x2−a2)+C.◼(−a2×1ai×1ai=1,C=a24ln(ai))
Terms of Service
Privacy Policy
Contact: info@tinkutara.com