All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 68149 by ~ À ® @ 237 ~ last updated on 06/Sep/19
Explicitf(a)=∑∞n=1(−1)nn(an+1)
Commented by turbo msup by abdo last updated on 06/Sep/19
ifa=0f(0)=∑n=1∞(−1)nn=−ln(2)ifa≠0wehavef(a)a=∑n=1∞(−1)nan(an+1)=∑n=1∞(−1)n{1an−1an+1}=1a∑n=1∞(−1)nn−∑n=1∞(−1)nan+1=−1aln(2)−∑n=1∞(−1)nan+1lets(x)=∑n=1∞(−1)nan+1xan+1with∣x∣<1s(1)=∑n=1∞(−1)nan+1s′(x)=∑n=1∞(−1)nxan=∑n=1∞(−xa)n=11+xa⇒s(x)=∫0xdt1+ta+cs(0)=0=c⇒s(x)=∫0xdt1+ta⇒s(1)=∫01dt1+ta⇒f(a)a=−1aln(2)−∫01dt1+ta⇒f(a)=−ln(2)−a∫01dt1+tabecontinued....
Commented by mathmax by abdo last updated on 06/Sep/19
errorfromline10s′(x)=∑n=1∞(−xa)n=−xa∑n=1∞(−xa)n−1=−xa∑n=0∞(−xa)n=−xa1+xa⇒s(x)=−∫0xta1+tadt+cs(0)=0=c⇒s(x)=−∫0xta1+tadt⇒∑n=1∞(−1)nan+1=s(1)=−∫01ta1+tadt=−∫011+ta−11+tadt=−1+∫01dt1+tabecontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com