Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 39142 by rahul 19 last updated on 03/Jul/18

F(x) = x^3 −9x^2 +24x+c=0 has three  real and distinct roots α , β & γ .  Q.1 → Possible value of c is :  Q.2 → If [α]+[β]+[γ]= 8 then c is :  Q.3 → If [α]+[β]+[γ]=7 then c is :    Options for the above 3 Q. →  a) (−20,−16)        b) (−20,−18)  c) (−18,−16)         d) none of these.    [.] = greatest integer function.

F(x)=x39x2+24x+c=0hasthreerealanddistinctrootsα,β&γ.Q.1Possiblevalueofcis:Q.2If[α]+[β]+[γ]=8thencis:Q.3If[α]+[β]+[γ]=7thencis:Optionsfortheabove3Q.a)(20,16)b)(20,18)c)(18,16)d)noneofthese.[.]=greatestintegerfunction.

Answered by MJS last updated on 03/Jul/18

f(x)=x^3 −9x^2 +24x+c  f′(x)=3x^2 −18x+24  x^2 −6x+8=0  x_1 =2; x_2 =4  f(2)=20+c [local max]  f(4)=16+c [local min]  ⇒ f(x) has 3 real and distinct roots with  −20<c<−16 ⇒ if c∈Z: c∈{−19, −18, −17}    for Q2 & Q3 we have to solve the three  equations  x^3 −9x^2 +24x−17=0  x^3 −9x^2 +24x−18=0  x^3 −9x^2 +24x−19=0  with x=z+3 we get  z^3 −3z+1=0  z^3 −3z=0  z^3 +3z−1=0  the 2^(nd)  one is easy to solve  for the 1^(st)  & 3^(rd)  we use the trigonometric  formula  z=2(√(−(p/3)))sin((1/3)(arcsin(((9q)/(2p^2 ))(√(−(p/3))))+2kπ)) with k=0, 1, 2    z^3 −3z+1=0       z={−2cos (π/9); 2sin (π/(18)); 2cos ((2π)/9)}       x={3−2cos (π/9); 3+2sin (π/(18)); 3+2cos ((2π)/9)}       [x]={1; 3; 4} ⇒ sum([x])=8  z^3 −3z=0       z={−(√3); 0; (√3)}       x={3−(√3); 3; 3+(√3)}       [x]={1; 3; 4} ⇒ sum([x])=8  z^3 −3z−1=0       z={−2cos ((2π)/9); −2sin (π/(18)); 2cos (π/9)}       x={3−2cos ((2π)/9); 3−2sin (π/(18)); 3+2cos (π/9)}       [x]={1; 2; 4} ⇒ sum([x])=7    Q1: c∈{−19; −18; −17}  Q2: c=−18 ∨ c=−17  Q3: c=−19

f(x)=x39x2+24x+cf(x)=3x218x+24x26x+8=0x1=2;x2=4f(2)=20+c[localmax]f(4)=16+c[localmin]f(x)has3realanddistinctrootswith20<c<16ifcZ:c{19,18,17}forQ2&Q3wehavetosolvethethreeequationsx39x2+24x17=0x39x2+24x18=0x39x2+24x19=0withx=z+3wegetz33z+1=0z33z=0z3+3z1=0the2ndoneiseasytosolveforthe1st&3rdweusethetrigonometricformulaz=2p3sin(13(arcsin(9q2p2p3)+2kπ))withk=0,1,2z33z+1=0z={2cosπ9;2sinπ18;2cos2π9}x={32cosπ9;3+2sinπ18;3+2cos2π9}[x]={1;3;4}sum([x])=8z33z=0z={3;0;3}x={33;3;3+3}[x]={1;3;4}sum([x])=8z33z1=0z={2cos2π9;2sinπ18;2cosπ9}x={32cos2π9;32sinπ18;3+2cosπ9}[x]={1;2;4}sum([x])=7Q1:c{19;18;17}Q2:c=18c=17Q3:c=19

Commented by rahul 19 last updated on 03/Jul/18

Thank You Sir ! ����

Terms of Service

Privacy Policy

Contact: info@tinkutara.com